Carnevale, B., Baldanzi, L., Pilato, L., Fanucci, L..
2016.
A flexible system-on-a-chip implementation of the Advanced Encryption Standard. 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). :156–161.
Systems-on-a-Chip are among the best-performing and complete solutions for complex electronic systems. This is also true in the field of network security, an application requiring high performance with low resource usage. This work presents an Advanced Encryption Standard implementation for Systems-on-a-Chip using as a reference the Cipher Block Chaining mode. In particular, a flexible interface based and the Advanced Peripheral Bus to integrate the encryption algorithm with any kind of processor is presented. The hardware-software approach of the architecture is also analyzed and described. The final system was integrated on a Xilinx Zynq 7000 to prototype and evaluate the idea. Results show that our solution demonstrates good performance and flexibility with low resource usage, occupying less than 2% of the Zynq 7000 with a throughput of 320 Mbps. The architecture is suitable when implementations of symmetric encryption algorithms for modern Systems-on-a-Chip are required.
Najjar-Ghabel, S., Yousefi, S., Lighvan, M. Z..
2016.
A high speed implementation counter mode cryptography using hardware parallelism. 2016 Eighth International Conference on Information and Knowledge Technology (IKT). :55–60.
Nowadays, cryptography is one of the common security mechanisms. Cryptography algorithms are used to make secure data transmission over unsecured networks. Vital applications are required to techniques that encrypt/decrypt big data at the appropriate time, because the data should be encrypted/decrypted are variable size and usually the size of them is large. In this paper, for the mentioned requirements, the counter mode cryptography (CTR) algorithm with Data Encryption Standard (DES) core is paralleled by using Graphics Processing Unit (GPU). A secondary part of our work, this parallel CTR algorithm is applied on special network on chip (NoC) architecture that designed by Heracles toolkit. The results of numerical comparison show that GPU-based implementation can be achieved better runtime in comparison to the CPU-based one. Furthermore, our final implementations show that parallel CTR mode cryptography is achieved better runtime by using special NoC that applied on FPGA board in comparison to GPU-based and CPU ones.
Takalo, H., Ahmadi, A., Mirhassani, M., Ahmadi, M..
2016.
Analog cellular neural network for application in physical unclonable functions. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2635–2638.
In this paper an analog cellular neural network is proposed with application in physical unclonable function design. Dynamical behavior of the circuit and its high sensitivity to the process variation can be exploited in a challenge-response security system. The proposed circuit can be used as unclonable core module in the secure systems for applications such as device identification/authentication and secret key generation. The proposed circuit is designed and simulated in 45-nm bulk CMOS technology. Monte Carlo simulation for this circuit, results in unpolarized Gaussian-shaped distribution for Hamming Distance between 4005 100-bit PUF instances.
Tan, B., Biglari-Abhari, M., Salcic, Z..
2016.
A system-level security approach for heterogeneous MPSoCs. 2016 Conference on Design and Architectures for Signal and Image Processing (DASIP). :74–81.
Embedded systems are becoming increasingly complex as designers integrate different functionalities into a single application for execution on heterogeneous hardware platforms. In this work we propose a system-level security approach in order to provide isolation of tasks without the need to trust a central authority at run-time. We discuss security requirements that can be found in complex embedded systems that use heterogeneous execution platforms, and by regulating memory access we create mechanisms that allow safe use of shared IP with direct memory access, as well as shared libraries. We also present a prototype Isolation Unit that checks memory transactions and allows for dynamic configuration of permissions.
Srinivas, N. S. S., Akramuddin, M..
2016.
FPGA based hardware implementation of AES Rijndael algorithm for Encryption and Decryption. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). :1769–1776.
AES algorithm or Rijndael algorithm is a network security algorithm which is most commonly used in all types of wired and wireless digital communication networks for secure transmission of data between two end users, especially over a public network. This paper presents the hardware implementation of AES Rijndael Encryption and Decryption Algorithm by using Xilinx Virtex-7 FPGA. The hardware design approach is entirely based on pre-calculated look-up tables (LUTs) which results in less complex architecture, thereby providing high throughput and low latency. There are basically three different formats in AES. They are AES-128, AES-192 and AES-256. The encryption and decryption blocks of all the three formats are efficiently designed by using Verilog-HDL and are synthesized on Virtex-7 XC7VX690T chip (Target Device) with the help of Xilinx ISE Design Suite-14.7 Tool. The synthesis tool was set to optimize speed, area and power. The power analysis is made by using Xilinx XPower Analyzer. Pre-calculated LUTs are used for the implementation of algorithmic functions, namely S-Box and Inverse S-Box transformations and also for GF (28) i.e. Galois Field Multiplications involved in Mix-Columns and Inverse Mix-Columns transformations. The proposed architecture is found to be having good efficiency in terms of latency, throughput, speed/delay, area and power.
Dofe, J., Frey, J., Yu, Q..
2016.
Hardware security assurance in emerging IoT applications. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2050–2053.
The Internet of Things (IoT) offers a more advanced service than a single device or an isolated system, as IoT connects diverse components, such as sensors, actuators, and embedded devices through the internet. As predicted by Cisco, there will be 50 billion IoT connected devices by 2020. Integration of such a tremendous number of devices into IoT potentially brings in a new concern, system security. In this work, we review two typical hardware attacks that can harm the emerging IoT applications. As IoT devices typically have limited computation power and need to be energy efficient, sophisticated cryptographic algorithms and authentication protocols are not suitable for every IoT device. To simultaneously thwart hardware Trojan and side-channel analysis attacks, we propose a low-cost dynamic permutation method for IoT devices. Experimental results show that the proposed method achieves 5.8X higher accumulated partial guessing entropy than the baseline, thus strengthening the IoT processing unit against hardware attacks.
Dofe, Jaya, Yu, Qiaoyan, Wang, Hailang, Salman, Emre.
2016.
Hardware Security Threats and Potential Countermeasures in Emerging 3D ICs. Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. :69–74.
New hardware security threats are identified in emerging three-dimensional (3D) integrated circuits (ICs) and potential countermeasures are introduced. Trigger and payload mechanisms for future 3D hardware Trojans are predicted. Furthermore, a novel, network-on-chip based 3D obfuscation method is proposed to block the direct communication between two commercial dies in a 3D structure, thus thwarting reverse engineering attacks on the vertical dimension. Simulation results demonstrate that the proposed method effectively obfuscates the cross-plane communication by increasing the reverse engineering time by approximately 5x as compared to using direct through silicon via (TSV) connections. The proposed method consumes approximately one fifth the area and power of a typical network-on-chip designed in a 65 nm technology, exhibiting limited overhead.
Ye, M., Hu, N., Wei, S..
2016.
Lightweight secure sensing using hardware isolation. 2016 IEEE SENSORS. :1–3.
This paper develops a new lightweight secure sensing technique using hardware isolation. We focus on protecting the sensor from unauthorized accesses, which can be issued by attackers attempting to compromise the security and privacy of the sensed data. We satisfy the security requirements by employing the hardware isolation feature provided by the secure processor of the target sensor system. In particular, we deploy the sensor in a hardware isolated secure environment, which eliminates the potential vulnerability exposed to unauthorized attackers. We implement the hardware isolation-based secure sensing approach on an Xilinx Zynq-7000 SoC leveraging ARM TrustZone. Our experiments and security analysis on the real hardware prove the effectiveness and low overhead of the proposed approach.
Boraten, Travis, DiTomaso, Dominic, Kodi, Avinash Karanth.
2016.
Secure Model Checkers for Network-on-Chip (NoC) Architectures. Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. :45–50.
As chip multiprocessors (CMPs) are becoming more susceptible to process variation, crosstalk, and hard and soft errors, emerging threats from rogue employees in a compromised foundry are creating new vulnerabilities that could undermine the integrity of our chips with malicious alterations. As the Network-on-Chip (NoC) is a focal point of sensitive data transfer and critical device coordination, there is an urgent demand for secure and reliable communication. In this paper we propose Secure Model Checkers (SMCs), a real-time solution for control logic verification and functional correctness in the micro-architecture to detect Hardware Trojan (HT) induced denial-of-service attacks and improve reliability. In our evaluation, we show that SMCs provides significant security enhancements in real-time with only 1.5% power and 1.1% area overhead penalty in the micro-architecture.
Gomes, T., Salgado, F., Pinto, S., Cabral, J., Tavares, A..
2016.
Towards an FPGA-based network layer filter for the Internet of Things edge devices. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
In the near future, billions of new smart devices will connect the big network of the Internet of Things, playing an important key role in our daily life. Allowing IPv6 on the low-power resource constrained devices will lead research to focus on novel approaches that aim to improve the efficiency, security and performance of the 6LoWPAN adaptation layer. This work in progress paper proposes a hardware-based Network Packet Filtering (NPF) and an IPv6 Link-local address calculator which is able to filter the received IPv6 packets, offering nearly 18% overhead reduction. The goal is to obtain a System-on-Chip implementation that can be deployed in future IEEE 802.15.4 radio modules.