Biblio
The objective of this paper is to propose a model of a distributed intrusion detection system based on the multi-agent paradigm and the distributed file system (HDFS). Multi-agent systems (MAS) are very suitable to intrusion detection systems as they can address the issue of geographic data security in terms of autonomy, distribution and performance. The proposed system is based on a set of autonomous agents that cooperate and collaborate with each other to effectively detect intrusions and suspicious activities that may impact geographic information systems. Our system allows the detection of known and unknown computer attacks without any human intervention (Security Experts) unlike traditional intrusion detection systems that rely on knowledge bases as a mechanism to detect known attacks. The proposed model allows a real time detection of known and unknown attacks within large networks hosting geographic data.
The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.
Adversarial models are well-established for cryptographic protocols, but distributed real-time protocols have requirements that these abstractions are not intended to cover. The IEEE/IEC 61850 standard for communication networks and systems for power utility automation in particular not only requires distributed processing, but in case of the generic object oriented substation events and sampled value (GOOSE/SV) protocols also hard real-time characteristics. This motivates the desire to include both quality of service (QoS) and explicit network topology in an adversary model based on a π-calculus process algebraic formalism based on earlier work. This allows reasoning over process states, placement of adversarial entities and communication behaviour. We demonstrate the use of our model for the simple case of a replay attack against the publish/subscribe GOOSE/SV subprotocol, showing bounds for non-detectability of such an attack.
{The secure exact-repair regenerating codes are studied, for distributed storage systems with parameters (n
Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.
Industrial Control systems traditionally achieved security by using proprietary protocols to communicate in an isolated environment from the outside. This paradigm is changed with the advent of the Industrial Internet of Things that foresees flexible and interconnected systems. In this contribution, a device acting as a connection between the operational technology network and information technology network is proposed. The device is an intrusion detection system related to legacy systems that is able to collect and reporting data to and from industrial IoT devices. It is based on the common signature based intrusion detection system developed in the information technology domain, however, to cope with the constraints of the operation technology domain, it exploits anomaly based features. Specifically, it is able to analyze the traffic on the network at application layer by mean of deep packet inspection, parsing the information carried by the proprietary protocols. At a later stage, it collect and aggregate data from and to IoT domain. A simple set up is considered to prove the effectiveness of the approach.
With the popularity of smart devices and the widespread use of the Wi-Fi-based indoor localization, edge computing is becoming the mainstream paradigm of processing massive sensing data to acquire indoor localization service. However, these data which were conveyed to train the localization model unintentionally contain some sensitive information of users/devices, and were released without any protection may cause serious privacy leakage. To solve this issue, we propose a lightweight differential privacy-preserving mechanism for the edge computing environment. We extend ε-differential privacy theory to a mature machine learning localization technology to achieve privacy protection while training the localization model. Experimental results on multiple real-world datasets show that, compared with the original localization technology without privacy-preserving, our proposed scheme can achieve high accuracy of indoor localization while providing differential privacy guarantee. Through regulating the value of ε, the data quality loss of our method can be controlled up to 8.9% and the time consumption can be almost negligible. Therefore, our scheme can be efficiently applied in the edge networks and provides some guidance on indoor localization privacy protection in the edge computing.
Cyber-physical systems (CPS) research leverages the expertise of researchers from multiple domains to engineer complex systems of interacting physical and computational components. An approach called co-simulation is often used in CPS conceptual design to integrate the specialized tools and simulators from each of these domains into a joint simulation for the evaluation of design decisions. Many co-simulation platforms are being developed to expedite CPS conceptualization and realization, but most use intrusive modeling and communication libraries that require researchers to either abandon their existing models or spend considerable effort to integrate them into the platform. A significant number of these co-simulation platforms use the High Level Architecture (HLA) standard that provides a rich set of services to facilitate distributed simulation. This paper introduces a simple gateway that can be readily implemented without co-simulation expertise to adapt existing models and research infrastructure for use in HLA. An open-source implementation of the gateway has been developed for the National Institute of Standards and Technology (NIST) co-simulation platform called the Universal CPS Environment for Federation (UCEF).
We consider distributed Kalman filter for dynamic state estimation over wireless sensor networks. It is promising but challenging when network is under cyber attacks. Since the information exchange between nodes, the malicious attacks quickly spread across the entire network, which causing large measurement errors and even to the collapse of sensor networks. Aiming at the malicious network attack, a trust-based distributed processing frame is proposed. Which allows neighbor nodes to exchange information, and a series of trusted nodes are found using truth discovery. As a demonstration, distributed Cooperative Localization is considered, and numerical results are provided to evaluate the performance of the proposed approach by considering random, false data injection and replay attacks.
With the rapid development of Internet of things (IOT) and big data, the number of network terminal devices and big data transmission are increasing rapidly. Traditional cloud computing faces a great challenge in dealing with this massive amount of data. Fog computing which extends the computing at the edge of the network can provide computation and data storage. Attribute based-encryption can effectively achieve the fine-grained access control. However, the computational complexity of the encryption and decryption is growing linearly with the increase of the number of attributes. In order to reduce the computational cost and guarantee the confidentiality of data, distributed access control with outsourced computation in fog computing is proposed in this paper. In our proposed scheme, fog device takes most of computational cost in encryption and decryption phase. The computational cost of the receiver and sender can be reduced. Moreover, the private key of the user is generated by multi-authority which can enhance the security of data. The analysis of security and performance shows that our proposed scheme proves to be effective and secure.