Biblio
Vehicular Ad-hoc Networks (VANETs) are a subset of Mobile Ad-hoc Networks (MANETs). They are deployed to introduce the ability of inter-communication among vehicles in order to guarantee safety and provide services for people while driving. VANETs are exposed to many types of attacks like denial of service, spoofing, ID disclosure and Sybil attacks. In this paper, a novel lightweight approach for preventing Sybil attack in VANETs is proposed. The presented protocol scheme uses symmetric key encryption and authentication between Road Side Units (RSUs) and vehicles on the road so that no malicious vehicle could gain more than one identity inside the network. This protocol does not need managers for Road Side Units (RSUs) or Certification Authority (CA) and uses minimum amount of messages exchanged with RSU making the scheme efficient and effective.
In Vehicular networks, privacy, especially the vehicles' location privacy is highly concerned. Several pseudonymous based privacy protection mechanisms have been established and standardized in the past few years by IEEE and ETSI. However, vehicular networks are still vulnerable to Sybil attack. In this paper, a Sybil attack detection method based on k-Nearest Neighbours (kNN) classification algorithm is proposed. In this method, vehicles are classified based on the similarity in their driving patterns. Furthermore, the kNN methods' high runtime complexity issue is also optimized. The simulation results show that our detection method can reach a high detection rate while keeping error rate low.
Vehicular networks have been drawing special atten- tion in recent years, due to its importance in enhancing driving experience and improving road safety in future smart city. In past few years, several security services, based on cryptography, PKI and pseudonymous, have been standardized by IEEE and ETSI. However, vehicular networks are still vulnerable to various attacks, especially Sybil attack. In this paper, a Support Vector Machine (SVM) based Sybil attack detection method is proposed. We present three SVM kernel functions based classifiers to distinguish the malicious nodes from benign ones via evaluating the variance in their Driving Pattern Matrices (DPMs). The effectiveness of our proposed solution is evaluated through extensive simulations based on SUMO simulator and MATLAB. The results show that the proposed detection method can achieve a high detection rate with low error rate even under a dynamic traffic environment.
Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.
Mobile Healthcare Networks (MHN) continuouslycollect the patients' health data sensed by wearable devices, andanalyze the collected data pre-processed by servers combinedwith medical histories, such that disease diagnosis and treatmentare improved, and the heavy burden on the existing healthservices is released. However, the network is vulnerable to Sybilattacks, which would degrade network performance, disruptproceedings, manipulate data or cheat others maliciously. What'smore, the user is reluctant to leak identity privacy, so the identityprivacy preserving makes Sybil defenses more difficult. One ofthe best choices is mutually authenticating each other with noidentity information involved. Thus, we propose a fine-grainedauthentication scheme based on Attribute-Based Signature (ABS)using lattice assumption, where a signer is authorized by an at-tribute set instead of single identity string. This ABS scheme usesFiat-Shamir framework and supports flexible threshold signaturepredicates. Moreover, to anonymously guarantee integrity andavailability of health data in MHN, we design an anonymousanti-Sybil attack protocol based on our ABS scheme, so thatSybil attacks are prevented. As there is no linkability betweenidentities and services, the users' identity privacy is protected. Finally, we have analyzed the security and simulated the runningtime for our proposed ABS scheme.
Vehicular ad hoc networks (VANETs) are designed to provide traffic safety by exploiting the inter-vehicular communications. Vehicles build awareness of traffic in their surroundings using information broadcast by other vehicles, such as speed, location and heading, to proactively avoid collisions. The effectiveness of these VANET traffic safety applications is particularly dependent on the accuracy of the location information advertised by each vehicle. Therefore, traffic safety can be compromised when Sybil attackers maliciously advertise false locations or other inaccurate GPS readings are sent. The most effective way to detect a Sybil attack or correct the noise in the GPS readings is localizing vehicles based on the physical features of their transmission signals. The current localization techniques either are designed for networks where the nodes are immobile or suffer from inaccuracy in high-interference environments. In this paper, we present a RSSI-based localization technique that uses mobile nodes for localizing another mobile node and adjusts itself based on the heterogeneous interference levels in the environment. We show via simulation that our localization mechanism is more accurate than the other mechanisms and more resistant to environments with high interference and mobility.
Internet of Things (IoT) is an emerging paradigm in information technology (IT) that integrates advancements in sensing, computing and communication to offer enhanced services in everyday life. IoTs are vulnerable to sybil attacks wherein an adversary fabricates fictitious identities or steals the identities of legitimate nodes. In this paper, we model sybil attacks in IoT and evaluate its impact on performance. We also develop a defense mechanism based on behavioural profiling of nodes. We develop an enhanced AODV (EAODV) protocol by using the behaviour approach to obtain the optimal routes. In EAODV, the routes are selected based on the trust value and hop count. Sybil nodes are identified and discarded based on the feedback from neighbouring nodes. Evaluation of our protocol in ns-2 simulator demonstrates the effectiveness of our approach in identifying and detecting sybil nodes in IoT network.
Recommender systems have become quite popular recently. However, such systems are vulnerable to several types of attacks that target user ratings. One such attack is the Sybil attack where an entity masquerades as several identities with the intention of diverting user ratings. In this work, we propose evolutionary game theory as a possible solution to the Sybil attack in recommender systems. After modeling the attack, we use replicator dynamics to solve for evolutionary stable strategies. Our results show that under certain conditions that are easily achievable by a system administrator, the probability of an attack strategy drops to zero implying degraded fitness for Sybil nodes that eventually die out.
Sybil attacks, in which an adversary creates a large number of identities, present a formidable problem for the robustness of recommendation systems. One promising method of sybil detection is to use data from social network ties to implicitly infer trust. Previous work along this dimension typically a) assumes that it is difficult/costly for an adversary to create edges to honest nodes in the network; and b) limits the amount of damage done per such edge, using conductance-based methods. However, these methods fail to detect a simple class of sybil attacks which have been identified in online systems. Indeed, conductance-based methods seem inherently unable to do so, as they are based on the assumption that creating many edges to honest nodes is difficult, which seems to fail in real-world settings. We create a sybil defense system that accounts for the adversary's ability to launch such attacks yet provably withstands them by: Notassuminganyrestrictiononthenumberofedgesanadversarycanform,butinsteadmakingamuch weaker assumption that creating edges from sybils to most honest nodes is difficult, yet allowing that the remaining nodes can be freely connected to. Relaxing the goal from classifying all nodes as honest or sybil to the goal of classifying the "core" nodes of the network as honest; and classifying no sybil nodes as honest. Exploiting a new, for sybil detection, social network property, namely, that nodes can be embedded in low-dimensional spaces.
Crowdsourcing is an unique and practical approach to obtain personalized data and content. Its impact is especially significant in providing commentary, reviews and metadata, on a variety of location based services. In this study, we examine reliability of the Waze mapping service, and its vulnerability to a variety of location-based attacks. Our goals are to understand the severity of the problem, shed light on the general problem of location and device authentication, and explore the efficacy of potential defenses. Our preliminary results already show that a single attacker with limited resources can cause havoc on Waze, producing ``virtual'' congestion and accidents, automatically re-routing user traffic, and compromising user privacy by tracking users' precise movements via software while staying undetected. To defend against these attacks, we propose a proximity-based Sybil detection method to filter out malicious devices.
- « first
- ‹ previous
- 1
- 2
- 3