Visible to the public Biblio

Filters: Keyword is stability  [Clear All Filters]
2023-02-24
Ding, Haihao, Zhao, Qingsong.  2022.  Multilayer Network Modeling and Stability Analysis of Internet of Battlefield Things. 2022 IEEE International Systems Conference (SysCon). :1—6.
Intelligent service network under the paradigm of the Internet of Things (IoT) uses sensor and network communication technology to realize the interconnection of everything and real-time communication between devices. Under the background of combat, all kinds of sensor devices and equipment units need to be highly networked to realize interconnection and information sharing, which makes the Internet of Things technology hopeful to be applied in the battlefield to interconnect these entities to form the Internet of Battlefield Things (IoBT). This paper analyzes the related concepts of IoBT, and constructs the IoBT multilayer dependency network model according to the typical characteristics and topology of IoBT, then constructs the weighted super-adjacency matrix according to the coupling weights within and between different layers, and the stability model of IoBT is analyzed and derived. Finally, an example of IoBT network is given to provide a reference for analyzing the stability factors of IoBT network.
2021-08-03
Wang, Yazhou, Li, Bing, Zhang, Yan, Wu, Jiaxin, Yuan, Pengwei, Liu, Guimiao.  2020.  A Biometric Key Generation Mechanism for Authentication Based on Face Image. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). :231—235.
Facial biometrics have the advantages of high reliability, strong distinguishability and easily acquired for authentication. Therefore, it is becoming wildly used in identity authentication filed. However, there are stability, security and privacy issues in generating face key, which brings great challenges to face biometric authentication. In this paper, we propose a biometric key generation scheme based on face image. On the one hand, a deep neural network model for feature extraction is used to improve the stability of identity authentication. On the other hand, a key generation mechanism is designed to generate random biometric key while hiding original facial biometrics to enhance security and privacy of user authentication. The results show the FAR reach to 0.53% and the FRR reach to 0.57% in LFW face database, which achieves the better performance of biometric identification, and the proposed method is able to realize randomness of the generated biometric keys by NIST statistical test suite.
2021-05-20
Antonio, Elbren, Fajardo, Arnel, Medina, Ruji.  2020.  Tracking Browser Fingerprint using Rule Based Algorithm. 2020 16th IEEE International Colloquium on Signal Processing Its Applications (CSPA). :225—229.

Browsers collects information for better user experience by allowing JavaScript's and other extensions. Advertiser and other trackers take advantage on this useful information to tracked users across the web from remote devices on the purpose of individual unique identifications the so-called browser fingerprinting. Our work explores the diversity and stability of browser fingerprint by modifying the rule-based algorithm. Browser fingerprint rely only from the gathered data through browser, it is hard to tell that this piece of information still the same when upgrades and or downgrades are happening to any browsers and software's without user consent, which is stability and diversity are the most important usage of generating browser fingerprint. We implemented device fingerprint to identify consenting visitors in our website and evaluate individual devices attributes by calculating entropy of each selected attributes. In this research, it is noted that we emphasize only on data collected through a web browser by employing twenty (20) attributes to identify promising high value information to track how device information evolve and consistent in a period of time, likewise, we manually selected device information for evaluation where we apply the modified rules. Finally, this research is conducted and focused on the devices having the closest configuration and device information to test how devices differ from each other after several days of using on the basis of individual user configurations, this will prove in our study that every device is unique.

2021-03-22
Yang, S., Liu, S., Huang, J., Su, H., Wang, H..  2020.  Control Conflict Suppressing and Stability Improving for an MMC Distributed Control System. IEEE Transactions on Power Electronics. 35:13735–13747.
Compared with traditional centralized control strategies, the distributed control systems significantly improve the flexibility and expandability of an modular multilevel converter (MMC). However, the stability issue in the MMC distributed control system with the presence of control loop coupling interactions is rarely discussed in existing research works. This article is to improve the stability of an MMC distributed control system by inhibiting the control conflict due to the coupling interactions among control loops with incomplete control information. By modeling the MMC distributed control system, the control loop coupling interactions are analyzed and the essential cause of control conflict is revealed. Accordingly, a control parameter design principle is proposed to effectively suppress the disturbances from the targeted control conflict and improve the MMC system stability. The rationality of the theoretical analysis and the effectiveness of the control parameter design principle are confirmed by simulation and experimental results.
Hosseinipour, A., Hojabri, H..  2020.  Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
2020-12-17
Gao, X., Fu, X..  2020.  Miniature Water Surface Garbage Cleaning Robot. 2020 International Conference on Computer Engineering and Application (ICCEA). :806—810.

In light of the problem for garbage cleaning in small water area, an intelligent miniature water surface garbage cleaning robot with unmanned driving and convenient operation is designed. Based on STC12C5A60S2 as the main controller in the design, power module, transmission module and cleaning module are controlled together to realize the function of cleaning and transporting garbage, intelligent remote control of miniature water surface garbage cleaning robot is realized by the WiFi module. Then the prototype is developed and tested, which will verify the rationality of the design. Compared with the traditional manual driving water surface cleaning devices, the designed robot realizes the intelligent control of unmanned driving, and achieves the purpose of saving human resources and reducing labor intensity, and the system operates security and stability, which has certain practical value.

2020-11-16
Ibrahim, M., Alsheikh, A..  2018.  Assessing Level of Resilience Using Attack Graphs. 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
Cyber-Physical-Systems are subject to cyber-attacks due to existing vulnerabilities in the various components constituting them. System Resiliency is concerned with the extent the system is able to bounce back to a normal state under attacks. In this paper, two communication Networks are analyzed, formally described, and modeled using Architecture Analysis & Design Language (AADL), identifying their architecture, connections, vulnerabilities, resources, possible attack instances as well as their pre-and post-conditions. The generated network models are then verified against a security property using JKind model checker integrated tool. The union of the generated attack sequences/scenarios resulting in overall network compromise (given by its loss of stability) is the Attack graph. The generated Attack graph is visualized graphically using Unity software, and then used to assess the worst Level of Resilience for both networks.
2020-11-04
Rahman, S., Aburub, H., Mekonnen, Y., Sarwat, A. I..  2018.  A Study of EV BMS Cyber Security Based on Neural Network SOC Prediction. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1—5.

Recent changes to greenhouse gas emission policies are catalyzing the electric vehicle (EV) market making it readily accessible to consumers. While there are challenges that arise with dense deployment of EVs, one of the major future concerns is cyber security threat. In this paper, cyber security threats in the form of tampering with EV battery's State of Charge (SOC) was explored. A Back Propagation (BP) Neural Network (NN) was trained and tested based on experimental data to estimate SOC of battery under normal operation and cyber-attack scenarios. NeuralWare software was used to run scenarios. Different statistic metrics of the predicted values were compared against the actual values of the specific battery tested to measure the stability and accuracy of the proposed BP network under different operating conditions. The results showed that BP NN was able to capture and detect the false entries due to a cyber-attack on its network.

2020-10-05
Rungger, Matthias, Zamani, Majid.  2018.  Compositional Construction of Approximate Abstractions of Interconnected Control Systems. IEEE Transactions on Control of Network Systems. 5:116—127.

We consider a compositional construction of approximate abstractions of interconnected control systems. In our framework, an abstraction acts as a substitute in the controller design process and is itself a continuous control system. The abstraction is related to the concrete control system via a so-called simulation function: a Lyapunov-like function, which is used to establish a quantitative bound between the behavior of the approximate abstraction and the concrete system. In the first part of the paper, we provide a small gain type condition that facilitates the compositional construction of an abstraction of an interconnected control system together with a simulation function from the abstractions and simulation functions of the individual subsystems. In the second part of the paper, we restrict our attention to linear control system and characterize simulation functions in terms of controlled invariant, externally stabilizable subspaces. Based on those characterizations, we propose a particular scheme to construct abstractions for linear control systems. We illustrate the compositional construction of an abstraction on an interconnected system consisting of four linear subsystems. We use the abstraction as a substitute to synthesize a controller to enforce a certain linear temporal logic specification.

2020-09-08
Peng, Peng, Li, Suoping, An, Xinlei, Wang, Fan, Dou, Zufang, Xu, Qianyu.  2019.  Synchronization for three chaotic systems with different structures and its application in secure communication. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1485–1489.
Based on the Lyapunov stability theory, a novel adaptive synchronization method is proposed for three chaotic systems with different orders. Then the proposed method is applied to secure communication. This paper designs a novel multistage chaotic synchronized secure communication system in which the encrypted information signal is transmitted to the receiver after two chaotic masking, and then recovered at the synchronized receiver. Numerical results show the success in transmitting a continuous signal and a discrete signal through three synchronized systems.
El Abbadi, Reda, Jamouli, Hicham.  2019.  Stabilization of Cyber Physical System exposed to a random replay attack modeled by Markov chains. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :528–533.
This paper is concerned with the stabilization problem of cyber physical system (CPS) exposed to a random replay attack. The study will ignore the effects of communication delays and packet losses, and the attention will be focused on the effect of replay attack on the stability of (CPS). The closed-loop system is modeled as Markovian jump linear system with two jumping parameters. Linear matrix inequality (LMI) formulation is used to give a condition for stochastic stabilization of the system. Finally the theory is illustrated through a numerical example.
2020-05-08
Su, Yu, Wu, Jing, Long, Chengnian, Li, Shaoyuan.  2018.  Event-triggered Control for Networked Control Systems Under Replay Attacks. 2018 Chinese Automation Congress (CAC). :2636—2641.
With wide application of networked control systems(N CSs), NCSs security have encountered severe challenges. In this paper, we propose a robust event-triggered controller design method under replay attacks, and the control signal on the plant is updated only when the event-triggering condition is satisfied. We develop a general random replay attack model rather than predetermined specific patterns for the occurrences of replay attacks, which allows to obtain random states to replay. We show that the proposed event-triggered control (ETC) scheme, if well designed, can tolerate some consecutive replay attacks, without affecting the corresponding closed-loop system stability and performance. A numerical examples is finally given to illustrate the effectiveness of our method.
Ali, Yasir, Shen, Zhen, Zhu, Fenghua, Xiong, Gang, Chen, Shichao, Xia, Yuanqing, Wang, Fei-Yue.  2018.  Solutions Verification for Cloud-Based Networked Control System using Karush-Kuhn-Tucker Conditions. 2018 Chinese Automation Congress (CAC). :1385—1389.
The rapid development of the Cloud Computing Technologies (CCTs) has amended the conventional design of resource-constrained Network Control System (NCS) to the powerful and flexible design of Cloud-Based Networked Control System (CB-NCS) by relocating the processing part to the cloud server. This arrangement has produced many internets based exquisite applications. However, this new arrangement has also raised many network security challenges for the cloud-based control system related to cyber-physical part of the system. In the absence of robust verification methodology, an attacker can launch the modification attack in order to destabilize or take control of NCS. It is desirable that there shall be a solution authentication methodology used to verify whether the incoming solutions are coming from the cloud or not. This paper proposes a methodology used for the verification of the receiving solution to the local control system from the cloud using Karush-Kuhn-Tucker (KKT) conditions, which is then applied to actuator after verification and thus ensure the stability in case of modification attack.
CUI, A-jun, Li, Chen, WANG, Xiao-ming.  2019.  Real-Time Early Warning of Network Security Threats Based on Improved Ant Colony Algorithm. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). :309—316.
In order to better ensure the operation safety of the network, the real-time early warning of network security threats is studied based on the improved ant colony algorithm. Firstly, the network security threat perception algorithm is optimized based on the principle of neural network, and the network security threat detection process is standardized according to the optimized algorithm. Finally, the real-time early warning of network security threats is realized. Finally, the experiment proves that the network security threat real-time warning based on the improved ant colony algorithm has better security and stability than the traditional warning methods, and fully meets the research requirements.
2020-05-04
Zhang, Meng, Shen, Chao, Han, Sicong.  2019.  A Compensation Control Scheme against DoS Attack for Nonlinear Cyber-Physical Systems. 2019 Chinese Control Conference (CCC). :144–149.

This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.

Chen, Jiaojiao, Liang, Xiangyang.  2019.  L2 Control for Networked Control Systems Subject to Denial-of-Service Attacks. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :502–505.
This paper focuses on the issue of designing L2 state feedback controller for networked control systems subject to unknown periodic denial-of-service (DoS) jamming attacks. Primarily, a resilient event-triggering mechanism is introduced to counteract the influence of DoS jamming attacks. Secondly, a switching system model of NCSs is set up. Then, the criteria of the exponential stability analysis is obtained by the piecewise Lyapunov functional approach based on the model. Thirdly, a co-design approach of the trigger parameters and L2 controller is developed. Lastly, a practical system is used for proving the efficiency of the proposed approach.
2020-03-23
Alaoui, Sadek Belamfedel, El Houssaine, Tissir, Noreddine, Chaibi.  2019.  Modelling, analysis and design of active queue management to mitigate the effect of denial of service attack in wired/wireless network. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–7.
Mitigating the effect of Distributed Denial of Service (DDoS) attacks in wired/wireless networks is a problem of extreme importance. The present paper investigates this problem and proposes a secure AQM to encounter the effects of DDoS attacks on queue's router. The employed method relies on modelling the TCP/AQM system subjected to different DoS attack rate where the resulting closed-loop system is expressed as new Markovian Jump Linear System (MJLS). Sufficient delay-dependent conditions which guarantee the syntheses of a stabilizing control for the closed-loop system with a guaranteed cost J* are derived. Finally, a numerical example is displayed.
2019-11-25
Sanjaroon, Vahideh, Motahari, Abolfazl S., Farhadi, Alireza, Khalaj, Babak. H..  2019.  Tight Bound on the Stability of Control Systems over Parallel Gaussian Channels Using a New Joint Source Channel Coding. 2019 Iran Workshop on Communication and Information Theory (IWCIT). :1–6.
In this paper, we address the stability problem of a noiseless linear time invariant control system over parallel Gaussian channels with feedback. It is shown that the eigenvalues-rate condition which has been proved as a necessary condition, is also sufficient for stability over parallel Gaussian channels. In fact, it is proved that for stabilizing a control system over the parallel Gaussian channels, it suffices that the Shannon channel capacity obtained by the water filling technique is greater than the sum of the logarithm of the unstable eigenvalues magnitude. In order to prove this sufficient condition, we propose a new nonlinear joint source channel coding for parallel Gaussian channels by which the initial state is transmitted through communication steps. This coding scheme with a linear control policy results in the stability of the system under the eigenvalues-rate condition. Hence, the proposed encoder, decoder and controller are efficient for this problem.
2019-08-05
Severson, T., Rodriguez-Seda, E., Kiriakidis, K., Croteau, B., Krishnankutty, D., Robucci, R., Patel, C., Banerjee, N..  2018.  Trust-Based Framework for Resilience to Sensor-Targeted Attacks in Cyber-Physical Systems. 2018 Annual American Control Conference (ACC). :6499-6505.

Networked control systems improve the efficiency of cyber-physical plants both functionally, by the availability of data generated even in far-flung locations, and operationally, by the adoption of standard protocols. A side-effect, however, is that now the safety and stability of a local process and, in turn, of the entire plant are more vulnerable to malicious agents. Leveraging the communication infrastructure, the authors here present the design of networked control systems with built-in resilience. Specifically, the paper addresses attacks known as false data injections that originate within compromised sensors. In the proposed framework for closed-loop control, the feedback signal is constructed by weighted consensus of estimates of the process state gathered from other interconnected processes. Observers are introduced to generate the state estimates from the local data. Side-channel monitors are attached to each primary sensor in order to assess proper code execution. These monitors provide estimates of the trust assigned to each observer output and, more importantly, independent of it; these estimates serve as weights in the consensus algorithm. The authors tested the concept on a multi-sensor networked physical experiment with six primary sensors. The weighted consensus was demonstrated to yield a feedback signal within specified accuracy even if four of the six primary sensors were injecting false data.

2018-09-28
Prabhakar, Pavithra, García Soto, Miriam.  2017.  Formal Synthesis of Stabilizing Controllers for Switched Systems. Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. :111–120.
In this paper, we describe an abstraction-based method for synthesizing a state-based switching control for stabilizing a family of dynamical systems. Given a set of dynamical systems and a set of polyhedral switching surfaces, the algorithm synthesizes a strategy that assigns to every surface the linear dynamics to switch to at the surface. Our algorithm constructs a finite game graph that consists of the switching surfaces as the existential nodes and the choices of the dynamics as the universal nodes. In addition, the edges capture quantitative information about the evolution of the distance of the state from the equilibrium point along the executions. A switching strategy for the family of dynamical systems is extracted by finding a strategy on the game graph which results in plays having a bounded weight. Such a strategy is obtained by reducing the problem to the strategy synthesis for an energy game, which is a well-studied problem in the literature. We have implemented our algorithm for polyhedral inclusion dynamics and linear dynamics. We illustrate our algorithm on examples from these two classes of systems.
2018-04-11
Wang, J. K., Peng, Chunyi.  2017.  Analysis of Time Delay Attacks Against Power Grid Stability. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :67–72.

The modern power grid, as a critical national infrastructure, is operated as a cyber-physical system. While the Wide-Area Monitoring, Protection and Control Systems (WAMPCS) in the power grid ensures stable dynamical responses by allowing real-time remote control and collecting measurement over across the power grid, they also expose the power grid to potential cyber-attacks. In this paper, we analyze the effects of Time Delay Attacks (TDAs), which disturb stability of the power grid by simply delaying the transfer of measurement and control demands over the grid's cyber infrastructure. Different from the existing work which simulates TDAs' impacts under specific scenarios, we come up with a generic analytical framework to derive the TDAs' effective conditions. In particular, we propose three concepts of TDA margins, TDA boundary, and TDA surface to define the insecure zones where TDAs are able to destabilize the grid. The proposed concepts and analytical results are exemplified in the context of Load Frequency Control (LFC), but can be generalized to other power control applications.

Cui, T., Yu, H., Hao, F..  2017.  Security Control for Linear Systems Subject to Denial-of-Service Attacks. 2017 36th Chinese Control Conference (CCC). :7673–7678.

This paper studies the stability of event-triggered control systems subject to Denial-of-Service attacks. An improved method is provided to increase frequency and duration of the DoS attacks where closed-loop stability is not destroyed. A two-mode switching control method is adopted to maintain stability of event-triggered control systems in the presence of attacks. Moreover, this paper reveals the relationship between robustness of systems against DoS attacks and lower bound of the inter-event times, namely, enlarging the inter-execution time contributes to enhancing the robustness of the systems against DoS attacks. Finally, some simulations are presented to illustrate the efficiency and feasibility of the obtained results.

2017-10-10
Bassily, Raef, Nissim, Kobbi, Smith, Adam, Steinke, Thomas, Stemmer, Uri, Ullman, Jonathan.  2016.  Algorithmic Stability for Adaptive Data Analysis. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :1046–1059.

Adaptivity is an important feature of data analysis - the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated a general formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a sequence of adaptively chosen ``queries'' about the unknown distribution P. How many samples n must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions towards resolving this question: We give upper bounds on the number of samples n that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015; NIPS, 2015). We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries (alternatively, risk minimization queries). As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that the stability notion guaranteed by differential privacy implies low generalization error. We also show that weaker stability guarantees such as bounded KL divergence and total variation distance lead to correspondingly weaker generalization guarantees.

2015-11-17
Ray Essick, University of Illinois at Urbana-Champaign, Ji-Woong Lee, Pennsylvania State University, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Control of Linear Switched Systems with Receding Horizon Modal Information. IEEE Transactions on Automatic Control. 59(9)

We provide an exact solution to two performance problems—one of disturbance attenuation and one of windowed variance minimization—subject to exponential stability. Considered are switched systems, whose parameters come from a finite set and switch according to a language such as that specified by an automaton. The controllers are path-dependent, having finite memory of past plant parameters and finite foreknowledge of future parameters. Exact, convex synthesis conditions for each performance problem are expressed in terms of nested linear matrix inequalities. The resulting semidefinite programming problem may be solved offline to arrive at a suitable controller. A notion of path-by-path performance is introduced for each performance problem, leading to improved system performance. Non-regular switching languages are considered and the results are extended to these languages. Two simple, physically motivated examples are given to demonstrate the application of these results.

2015-05-06
Dong-Hoon Shin, Shibo He, Junshan Zhang.  2014.  Robust, Secure, and Cost-Effective Design for Cyber-Physical Systems. Intelligent Systems, IEEE. 29:66-69.

Cyber-physical systems (CPS) can potentially benefit a wide array of applications and areas. Here, the authors look at some of the challenges surrounding CPS, and consider a feasible solution for creating a robust, secure, and cost-effective architecture.