Biblio
Browsers collects information for better user experience by allowing JavaScript's and other extensions. Advertiser and other trackers take advantage on this useful information to tracked users across the web from remote devices on the purpose of individual unique identifications the so-called browser fingerprinting. Our work explores the diversity and stability of browser fingerprint by modifying the rule-based algorithm. Browser fingerprint rely only from the gathered data through browser, it is hard to tell that this piece of information still the same when upgrades and or downgrades are happening to any browsers and software's without user consent, which is stability and diversity are the most important usage of generating browser fingerprint. We implemented device fingerprint to identify consenting visitors in our website and evaluate individual devices attributes by calculating entropy of each selected attributes. In this research, it is noted that we emphasize only on data collected through a web browser by employing twenty (20) attributes to identify promising high value information to track how device information evolve and consistent in a period of time, likewise, we manually selected device information for evaluation where we apply the modified rules. Finally, this research is conducted and focused on the devices having the closest configuration and device information to test how devices differ from each other after several days of using on the basis of individual user configurations, this will prove in our study that every device is unique.
In light of the problem for garbage cleaning in small water area, an intelligent miniature water surface garbage cleaning robot with unmanned driving and convenient operation is designed. Based on STC12C5A60S2 as the main controller in the design, power module, transmission module and cleaning module are controlled together to realize the function of cleaning and transporting garbage, intelligent remote control of miniature water surface garbage cleaning robot is realized by the WiFi module. Then the prototype is developed and tested, which will verify the rationality of the design. Compared with the traditional manual driving water surface cleaning devices, the designed robot realizes the intelligent control of unmanned driving, and achieves the purpose of saving human resources and reducing labor intensity, and the system operates security and stability, which has certain practical value.
Recent changes to greenhouse gas emission policies are catalyzing the electric vehicle (EV) market making it readily accessible to consumers. While there are challenges that arise with dense deployment of EVs, one of the major future concerns is cyber security threat. In this paper, cyber security threats in the form of tampering with EV battery's State of Charge (SOC) was explored. A Back Propagation (BP) Neural Network (NN) was trained and tested based on experimental data to estimate SOC of battery under normal operation and cyber-attack scenarios. NeuralWare software was used to run scenarios. Different statistic metrics of the predicted values were compared against the actual values of the specific battery tested to measure the stability and accuracy of the proposed BP network under different operating conditions. The results showed that BP NN was able to capture and detect the false entries due to a cyber-attack on its network.
We consider a compositional construction of approximate abstractions of interconnected control systems. In our framework, an abstraction acts as a substitute in the controller design process and is itself a continuous control system. The abstraction is related to the concrete control system via a so-called simulation function: a Lyapunov-like function, which is used to establish a quantitative bound between the behavior of the approximate abstraction and the concrete system. In the first part of the paper, we provide a small gain type condition that facilitates the compositional construction of an abstraction of an interconnected control system together with a simulation function from the abstractions and simulation functions of the individual subsystems. In the second part of the paper, we restrict our attention to linear control system and characterize simulation functions in terms of controlled invariant, externally stabilizable subspaces. Based on those characterizations, we propose a particular scheme to construct abstractions for linear control systems. We illustrate the compositional construction of an abstraction on an interconnected system consisting of four linear subsystems. We use the abstraction as a substitute to synthesize a controller to enforce a certain linear temporal logic specification.
This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.
Networked control systems improve the efficiency of cyber-physical plants both functionally, by the availability of data generated even in far-flung locations, and operationally, by the adoption of standard protocols. A side-effect, however, is that now the safety and stability of a local process and, in turn, of the entire plant are more vulnerable to malicious agents. Leveraging the communication infrastructure, the authors here present the design of networked control systems with built-in resilience. Specifically, the paper addresses attacks known as false data injections that originate within compromised sensors. In the proposed framework for closed-loop control, the feedback signal is constructed by weighted consensus of estimates of the process state gathered from other interconnected processes. Observers are introduced to generate the state estimates from the local data. Side-channel monitors are attached to each primary sensor in order to assess proper code execution. These monitors provide estimates of the trust assigned to each observer output and, more importantly, independent of it; these estimates serve as weights in the consensus algorithm. The authors tested the concept on a multi-sensor networked physical experiment with six primary sensors. The weighted consensus was demonstrated to yield a feedback signal within specified accuracy even if four of the six primary sensors were injecting false data.
The modern power grid, as a critical national infrastructure, is operated as a cyber-physical system. While the Wide-Area Monitoring, Protection and Control Systems (WAMPCS) in the power grid ensures stable dynamical responses by allowing real-time remote control and collecting measurement over across the power grid, they also expose the power grid to potential cyber-attacks. In this paper, we analyze the effects of Time Delay Attacks (TDAs), which disturb stability of the power grid by simply delaying the transfer of measurement and control demands over the grid's cyber infrastructure. Different from the existing work which simulates TDAs' impacts under specific scenarios, we come up with a generic analytical framework to derive the TDAs' effective conditions. In particular, we propose three concepts of TDA margins, TDA boundary, and TDA surface to define the insecure zones where TDAs are able to destabilize the grid. The proposed concepts and analytical results are exemplified in the context of Load Frequency Control (LFC), but can be generalized to other power control applications.
This paper studies the stability of event-triggered control systems subject to Denial-of-Service attacks. An improved method is provided to increase frequency and duration of the DoS attacks where closed-loop stability is not destroyed. A two-mode switching control method is adopted to maintain stability of event-triggered control systems in the presence of attacks. Moreover, this paper reveals the relationship between robustness of systems against DoS attacks and lower bound of the inter-event times, namely, enlarging the inter-execution time contributes to enhancing the robustness of the systems against DoS attacks. Finally, some simulations are presented to illustrate the efficiency and feasibility of the obtained results.
Adaptivity is an important feature of data analysis - the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated a general formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a sequence of adaptively chosen ``queries'' about the unknown distribution P. How many samples n must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions towards resolving this question: We give upper bounds on the number of samples n that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015; NIPS, 2015). We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries (alternatively, risk minimization queries). As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that the stability notion guaranteed by differential privacy implies low generalization error. We also show that weaker stability guarantees such as bounded KL divergence and total variation distance lead to correspondingly weaker generalization guarantees.
We provide an exact solution to two performance problems—one of disturbance attenuation and one of windowed variance minimization—subject to exponential stability. Considered are switched systems, whose parameters come from a finite set and switch according to a language such as that specified by an automaton. The controllers are path-dependent, having finite memory of past plant parameters and finite foreknowledge of future parameters. Exact, convex synthesis conditions for each performance problem are expressed in terms of nested linear matrix inequalities. The resulting semidefinite programming problem may be solved offline to arrive at a suitable controller. A notion of path-by-path performance is introduced for each performance problem, leading to improved system performance. Non-regular switching languages are considered and the results are extended to these languages. Two simple, physically motivated examples are given to demonstrate the application of these results.
Cyber-physical systems (CPS) can potentially benefit a wide array of applications and areas. Here, the authors look at some of the challenges surrounding CPS, and consider a feasible solution for creating a robust, secure, and cost-effective architecture.