Visible to the public Biblio

Filters: Keyword is ipv6 security  [Clear All Filters]
2022-03-14
Li, Xiang, Liu, Baojun, Zheng, Xiaofeng, Duan, Haixin, Li, Qi, Huang, Youjun.  2021.  Fast IPv6 Network Periphery Discovery and Security Implications. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :88–100.
Numerous measurement researches have been performed to discover the IPv4 network security issues by leveraging the fast Internet-wide scanning techniques. However, IPv6 brings the 128-bit address space and renders brute-force network scanning impractical. Although significant efforts have been dedicated to enumerating active IPv6 hosts, limited by technique efficiency and probing accuracy, large-scale empirical measurement studies under the increasing IPv6 networks are infeasible now. To fill this research gap, by leveraging the extensively adopted IPv6 address allocation strategy, we propose a novel IPv6 network periphery discovery approach. Specifically, XMap, a fast network scanner, is developed to find the periphery, such as a home router. We evaluate it on twelve prominent Internet service providers and harvest 52M active peripheries. Grounded on these found devices, we explore IPv6 network risks of the unintended exposed security services and the flawed traffic routing strategies. First, we demonstrate the unintended exposed security services in IPv6 networks, such as DNS, and HTTP, have become emerging security risks by analyzing 4.7M peripheries. Second, by inspecting the periphery's packet routing strategies, we present the flawed implementations of IPv6 routing protocol affecting 5.8M router devices. Attackers can exploit this common vulnerability to conduct effective routing loop attacks, inducing DoS to the ISP's and home routers with an amplification factor of \textbackslashtextbackslashgt 200. We responsibly disclose those issues to all involved vendors and ASes and discuss mitigation solutions. Our research results indicate that the security community should revisit IPv6 network strategies immediately.
2021-08-17
Wang, Zicheng, Cui, Bo.  2020.  An Enhanced System for Smart Home in IPv6-Based Wireless Home Network. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :119–122.
The development of IPv6-based wireless local area networks is becoming increasingly mature, and it has defined no less than different standards to meet the needs of different applications. Wireless home networks are widely used because they can be seamlessly connected to daily life, especially smart home devices linked to it. There are certain security issues with smart home devices deployed in wireless home networks, such as data tampering and leakage of sensitive information. This paper proposes a smart home management system based on IPv6 wireless home network, and develops a prototype system deployed on mobile portable devices. Through this system, different roles in the wireless home network can be dynamically authorized and smart home resources can be allocated to achieve the purpose of access control and management.
Daru, April Firman, Dwi Hartomo, Kristoko, Purnomo, Hindriyanto Dwi.  2020.  Internet of Things Wireless Attack Detection Conceptual Model Over IPv6 Network. 2020 International Seminar on Application for Technology of Information and Communication (iSemantic). :431–435.
Wireless network is an alternative communication to cable, where radio wave is used as transmission media instead of copper medium. However, wireless network more vulnerable to risk in security compared to cable network. Wireless network mostly used by Internet of Things node as communication media between nodes. Hence, these nodes exposed to risk of flooding attack from third party person. Hence, a system which capability to detect flooding attack at IoT node is required. Many researches have been done before, but most of the research only focus to IPv4 and signature-based detection. IPv6-based attacks undetectable by the current research, due to different datagram structure. This paper proposed a conceptual detection method with reinforcement learning algorithm to detect IPv6-based attack targeting IoT nodes. This reward will decide whether the detection system is good or not. The assessment calculation equation is used to turn reward-based score into detection accuracy.
Ul Rehman, Shafiq, Singh, Parminder, Manickam, Selvakumar, Praptodiyono, Supriyanto.  2020.  Towards Sustainable IoT Ecosystem. 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE). :135–138.
As the world is moving towards industry 4.0, it is estimated that in the near future billions of IoT devices will be interconnected over the Internet. The open and heterogeneous nature of IoT environment makes it vulnerable to adversarial attacks. To maintain sustainability in IoT ecosystem, this paper evaluates some of the recent IoT schemes based on key security features i.e. authentication, confidentiality, trust etc. These schemes are classified according to three-layer IoT architecture. Based on our findings, some of these solutions are applicable at physical layer while others are at network, and application layers. However, none of these schemes can provide end-to-end solution for IoT environment. Therefore, our work provides a roadmap for future research directions in IoT domain to design robust security schemes for IoT environment, thus can achieve sustainability in IoT ecosystem.
Praptodiyono, Supriyanto, Jauhari, Moh., Fahrizal, Rian, Hasbullah, Iznan H., Osman, Azlan, Ul Rehman, Shafiq.  2020.  Integration of Firewall and IDS on Securing Mobile IPv6. 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE). :163–168.
The number of Mobile device users in the word has evolved rapidly. Many internet users currently want to connect the internet for all utilities automatically. One of the technologies in the IPv6 network, which supports data access from moving users, is IPv6 Mobile protocol. In its mobility, the users on a range of networks can move the range to another network. High demand for this technology will interest to a hacker or a cracker to carry out an attack. One of them is a DoS attack that compromises a target to denial its services. A firewall is usually used to protect networks from external attacks. However, since the firewall based on the attacker database, the unknown may not be detected. In order to address the obstacle, a detection tool could be used. In this research, IDS as an intrusion detection tool was integrated with a firewall to be implemented in IPv6 Mobile to stop the DoS attack. The results of some experiments showed that the integration system could block the attack at 0.9 s in Correspondent Node and 1.2 s in Home Agent. The blocked attack can decrease the network throughput up to 27.44% when a Mobile Node in Home Agent, 28,87% when the Mobile Node in a Foreign Network. The final result of the blocked attack is reducing the average CPU utilization up to 30.99%.
Song, Guanglei, He, Lin, Wang, Zhiliang, Yang, Jiahai, Jin, Tao, Liu, Jieling, Li, Guo.  2020.  Towards the Construction of Global IPv6 Hitlist and Efficient Probing of IPv6 Address Space. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Fast IPv4 scanning has made sufficient progress in network measurement and security research. However, it is infeasible to perform brute-force scanning of the IPv6 address space. We can find active IPv6 addresses through scanning candidate addresses generated by the state-of-the-art algorithms, whose probing efficiency of active IPv6 addresses, however, is still very low. In this paper, we aim to improve the probing efficiency of IPv6 addresses in two ways. Firstly, we perform a longitudinal active measurement study over four months, building a high-quality dataset called hitlist with more than 1.3 billion IPv6 addresses distributed in 45.2k BGP prefixes. Different from previous work, we probe the announced BGP prefixes using a pattern-based algorithm, which makes our dataset overcome the problems of uneven address distribution and low active rate. Secondly, we propose an efficient address generation algorithm DET, which builds a density space tree to learn high-density address regions of the seed addresses in linear time and improves the probing efficiency of active addresses. On the public hitlist and our hitlist, we compare our algorithm DET against state-of-the-art algorithms and find that DET increases the de-aliased active address ratio by 10%, and active address (including aliased addresses) ratio by 14%, by scanning 50 million addresses.
Tseng, Chia-Wei, Wu, Li-Fan, Hsu, Shih-Chun, Yu, Sheng-Wang.  2020.  IPv6 DoS Attacks Detection Using Machine Learning Enhanced IDS in SDN/NFV Environment. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). :263–266.
The rapid growth of IPv6 traffic makes security issues become more important. This paper proposes an IPv6 network security system that integrates signature-based Intrusion Detection Systems (IDS) and machine learning classification technologies to improve the accuracy of IPv6 denial-of-service (DoS) attacks detection. In addition, this paper has also enhanced IPv6 network security defense capabilities through software-defined networking (SDN) and network function virtualization (NFV) technologies. The experimental results prove that the detection and defense mechanisms proposed in this paper can effectively strengthen IPv6 network security.
Zhang, Yu-Yan, Chen, Xing-Xing, Zhang, Xu.  2020.  PCHA: A Fast Packet Classification Algorithm For IPv6 Based On Hash And AVL Tree. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :397–404.
As the core infrastructure of cloud data operation, exchange and storage, data centerneeds to ensure its security and reliability, which are the important prerequisites for the development of cloud computing. Due to various illegal accesses, attacks, viruses and other security threats, it is necessary to protect the boundary of cloud data center through security gateway. Since the traffic growing up to gigabyte level, the secure gateway must ensure high transmission efficiency and different network services to support the cloud services. In addition, data center is gradually evolving from IPv4 to IPv6 due to excessive consumption of IP addresses. Packet classification algorithm, which can divide packets into different specific streams, is very important for QoS, real-time data stream application and firewall. Therefore, it is necessary to design a high performance IPv6 packet classification algorithm suitable for security gateway.AsIPv6 has a128-bitIP address and a different packet structure compared with IPv4, the traditional IPv4 packet classification algorithm is not suitable properly for IPv6 situations. This paper proposes a fast packet classification algorithm for IPv6 - PCHA (packet classification based on hash andAdelson-Velsky-Landis Tree). It adopts the three flow classification fields of source IPaddress(SA), destination IPaddress(DA) and flow label(FL) in the IPv6 packet defined by RFC3697 to implement fast three-tuple matching of IPv6 packet. It is through hash matching of variable length IPv6 address and tree matching of shorter flow label. Analysis and testing show that the algorithm has a time complexity close to O(1) in the acceptable range of space complexity, which meets the requirements of fast classification of IPv6 packetsand can adapt well to the changes in the size of rule sets, supporting fast preprocessing of rule sets. Our algorithm supports the storage of 500,000 3-tuple rules on the gateway device and can maintain 75% of the performance of throughput for small packets of 78 bytes.
Zheng, Gang, Xu, Xinzhong, Wang, Chao.  2020.  An Effective Target Address Generation Method for IPv6 Address Scan. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :73–77.
In recent years, IPv6 and its application are more and more widely deployed. Most network devices support and open IPv6 protocol stack. The security of IPv6 network is also concerned. In the IPv6 network security technology, address scanning is a key and difficult point. This paper presents a TGAs-based IPv6 address scanning method. It takes the known alive IPv6 addresses as input, and then utilizes the information entropy and clustering technology to mine the distribution law of seed addresses. Then, the final optimized target address set can be obtained by expanding from the seed address set according to the distribution law. Experimental results show that it can effectively improve the efficiency of IPv6 address scanning.
2020-12-21
Karthiga, K., Balamurugan, G., Subashri, T..  2020.  Computational Analysis of Security Algorithm on 6LowPSec. 2020 International Conference on Communication and Signal Processing (ICCSP). :1437–1442.
In order to the development of IoT, IETF developed a standard named 6LoWPAN for increase the usage of IPv6 to the tiny and smart objects with low power. Generally, the 6LoWPAN radio link needs end to end (e2e) security for its IPv6 communication process. 6LoWPAN requires light weight variant of security solutions in IPSec. A new security approach of 6LoWPAN at adaptation layer to provide e2e security with light weight IPSec. The existing security protocol IPsec is not suitable for its 6LoWPAN IoT environment because it has heavy restrictions on memory, power, duty cycle, additional overhead transmission. The IPSec had packet overhead problem due to share the secret key between two communicating peers by IKE (Internet Key Exchange) protocol. Hence the existing security protocol IPSec solutions are not suitable for lightweight-based security need in 6LoWPAN IoT. This paper describes 6LowPSec protocol with AES-CCM (Cipher block chaining Message authentication code with Counter mode) cryptographic algorithm with key size of 128 bits with minimum power consumption and duty cycle.
Kasah, N. b H., Aman, A. H. b M., Attarbashi, Z. S. M., Fazea, Y..  2020.  Investigation on 6LoWPAN Data Security for Internet of Things. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). :1–5.
Low-power wireless network technology is one of the main key characteristics in communication systems that are needed by the Internet of Things (IoT). Nowadays, the 6LoWPAN standard is one of the communication protocols which has been identified as an important protocol in IoT applications. Networking technology in 6LoWPAN transfer IPv6 packets efficiently in link-layer framework that is well-defined by IEEE 802.14.5 protocol. 6Lo WPAN development is still having problems such as threats and entrust crises. The most important part when developing this new technology is the challenge to secure the network. Data security is viewed as a major consideration in this network communications. Many researchers are working to secure 6LoWPAN communication by analyzing the architecture and network features. 6LoWPAN security weakness or vulnerability is exposed to various forms of network attack. In this paper, the security solutions for 6LoWPAN have been investigated. The requirements of safety in 6LoWPAN are also presented.
2020-01-21
Zhuang, Yuan, Pang, Qiaoyue, Wei, Min.  2019.  Secure and Fast Multiple Nodes Join Mechanism for IPv6-Based Industrial Wireless Network. 2019 International Conference on Information Networking (ICOIN). :1–6.
More and more industrial devices are expected to connect to the internet seamlessly. IPv6-based industrial wireless network can solve the address resources limitation problem. It is a challenge about how to ensure the wireless node join security after introducing the IPv6. In this paper, we propose a multiple nodes join mechanism, which includes a timeslot allocation method and secure join process for the IPv6 over IEEE 802.15.4e network. The timeslot allocation method is designed in order to configure communication resources in the join process for the new nodes. The test platform is implemented to verify the feasibility of the mechanism. The result shows that the proposed mechanism can reduce the communication cost for multiple nodes join process and improve the efficiency.
Taib, Abidah Mat, Othman, Nor Arzami, Hamid, Ros Syamsul, Halim, Iman Hazwam Abd.  2019.  A Learning Kit on IPv6 Deployment and Its Security Challenges for Neophytes. 2019 21st International Conference on Advanced Communication Technology (ICACT). :419–424.
Understanding the IP address depletion and the importance of handling security issues in IPv6 deployment can make IT personnel becomes more functional and helpful to the organization. It also applied to the management people who are responsible for approving the budget or organization policy related to network security. Unfortunately, new employees or fresh graduates may not really understand the challenge related to IPv6 deployment. In order to be equipped with appropriate knowledge and skills, these people may require a few weeks of attending workshops or training. Thus, of course involving some implementation cost as well as sacrificing allocated working hours. As an alternative to save cost and to help new IT personnel become quickly educated and familiar with IPv6 deployment issues, this paper presented a learning kit that has been designed to include self-learning features that can help neophytes to learn about IPv6 at their own pace. The kit contains some compact notes, brief security model and framework as well as a guided module with supporting quizzes to maintain a better understanding of the topics. Since IPv6 is still in the early phase of implementation in most of developing countries, this kit can be an additional assisting tool to accelerate the deployment of IPv6 environment in any organization. The kit also can be used by teachers and trainers as a supporting tool in the classroom. The pre-alpha testing has attracted some potential users and the findings proved their acceptance. The kit has prospective to be further enhanced and commercialized.
Orellana, Cristian, Villegas, Mónica M., Astudillo, Hernán.  2019.  Mitigating Security Threats through the Use of Security Tactics to Design Secure Cyber-Physical Systems (CPS). Proceedings of the 13th European Conference on Software Architecture - Volume 2. :109–115.
Cyber-Physical Systems (CPS) attract growing interest from architects and attackers, given their potential effect on privacy and safety of ecosystems and users. Architectural tactics have been proposed as a design-time abstraction useful to guide and evaluate systems design decisions that address specific system qualities, but there is little published evidence of how Security Tactics help to mitigate security threats in the context of Cyber-Physical Systems. This article reports the principled derivation of architectural tactics for an actual SCADA-SAP bridge, where security was the key concern; the key inputs were (1) a well-known taxonomies of architectural tactics, and (2) a detailed record of trade-offs among these tactics. The project architects used client-specified quality attributes to identify relevant tactics in the taxonomy, and information on their trade-offs to guide top-level decisions on system global shape. We venture that all architectural tactics taxonomies should be enriched with explicit trade-offs, allowing architects to compare alternative solutions that seem equally good on principle but are not so in practice.
Mazurczyk, Wojciech, Powójski, Krystian, Caviglione, Luca.  2019.  IPv6 Covert Channels in the Wild. Proceedings of the Third Central European Cybersecurity Conference. :1–6.

The increasing diffusion of malware endowed with steganographic techniques requires to carefully identify and evaluate a new set of threats. The creation of a covert channel to hide a communication within network traffic is one of the most relevant, as it can be used to exfiltrate information or orchestrate attacks. Even if network steganography is becoming a well-studied topic, only few works focus on IPv6 and consider real network scenarios. Therefore, this paper investigates IPv6 covert channels deployed in the wild. Also, it presents a performance evaluation of six different data hiding techniques for IPv6 including their ability to bypass some intrusion detection systems. Lastly, ideas to detect IPv6 covert channels are presented.

Luckie, Matthew, Beverly, Robert, Koga, Ryan, Keys, Ken, Kroll, Joshua A., claffy, k.  2019.  Network Hygiene, Incentives, and Regulation: Deployment of Source Address Validation in the Internet. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. :465–480.
The Spoofer project has collected data on the deployment and characteristics of IP source address validation on the Internet since 2005. Data from the project comes from participants who install an active probing client that runs in the background. The client automatically runs tests both periodically and when it detects a new network attachment point. We analyze the rich dataset of Spoofer tests in multiple dimensions: across time, networks, autonomous systems, countries, and by Internet protocol version. In our data for the year ending August 2019, at least a quarter of tested ASes did not filter packets with spoofed source addresses leaving their networks. We show that routers performing Network Address Translation do not always filter spoofed packets, as 6.4% of IPv4/24 tested in the year ending August 2019 did not filter. Worse, at least two thirds of tested ASes did not filter packets entering their networks with source addresses claiming to be from within their network that arrived from outside their network. We explore several approaches to encouraging remediation and the challenges of evaluating their impact. While we have been able to remediate 352 IPv4/24, we have found an order of magnitude more IPv4/24 that remains unremediated, despite myriad remediation strategies, with 21% unremediated for more than six months. Our analysis provides the most complete and confident picture of the Internet's susceptibility to date of this long-standing vulnerability. Although there is no simple solution to address the remaining long-tail of unremediated networks, we conclude with a discussion of possible non-technical interventions, and demonstrate how the platform can support evaluation of the impact of such interventions over time.
Liang, Xiao, Chen, Heyao.  2019.  A SDN-Based Hierarchical Authentication Mechanism for IPv6 Address. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :225–225.
The emergence of IPv6 protocol extends the address pool, but it also exposes all the Internet-connected devices to danger. Currently, there are some traditional schemes on security management of network addresses, such as prevention, traceability and encryption authentication, but few studies work on IPv6 protocol. In this paper, we propose a hierarchical authentication mechanism for the IPv6 source address with the technology of software defined network (SDN). This mechanism combines the authentication of three parts, namely the access network, the intra-domain and the inter-domain. And it can provide a fine-grained security protection for the devices using IPv6 addresses.
Li, Chunlei, Wu, Qian, Li, Hewu, Zhou, Jiang.  2019.  SDN-Ti: A General Solution Based on SDN to Attacker Traceback and Identification in IPv6 Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.

Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.

Jain, Jay Kumar, Chauhan, Dipti.  2019.  Analytical Study on Mobile Ad Hoc Networks for IPV6. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
The ongoing progressions in wireless innovation have lead to the advancement of another remote framework called Mobile Ad hoc Networks. The Mobile Ad hoc Network is a self arranging system of wireless gadgets associated by wireless connections. The traditional protocol, for example, TCP/IP has restricted use in Mobile impromptu systems in light of the absence of portability and assets. This has lead to the improvement of many steering conventions, for example, proactive, receptive and half breed. One intriguing examination zone in MANET is steering. Steering in the MANETs is a testing assignment and has gotten a colossal measure of consideration from examines. An uncommon consideration is paid on to feature the combination of MANET with the critical highlights of IPv6, for example, coordinated security, start to finish correspondence. This has prompted advancement of various directing conventions for MANETs, and every creator of each developed convention contends that the technique proposed gives an improvement over various distinctive systems considered in the writing for a given system situation. In this way, it is very hard to figure out which conventions may perform best under various diverse system situations, for example, expanding hub thickness and traffic. In this paper, we give the ongoing expository investigation on MANETs for IPV6 systems.
Izem, Acia, Wakrim, Mohamed, Ghadi, Abderrahim.  2019.  Logical Topology of Networks Implementing IPv6 Addressing. Proceedings of the 4th International Conference on Smart City Applications. :1–10.
The massive growth of the global routing tables is one of the biggest problems that still face internet nowadays. This problem is mainly caused by the random distribution of IPv4 addresses. With the immigration to IPv6 and the large ranges of addresses provided by this protocol, it is crucial to wisely manage the assignment of IPv6 prefixes. In this paper, we propose a process to generate a logical topology of IPv6 networks. This topology uses perfectly the summarization technique and consists in representing the summary routes in hierarchical manner such that large range of addresses represents several smaller ranges. The proposed aggregation process optimizes and divides up the routing tables which may help resolve the problem of the explosive growth of internet routing tables. Furthermore, the logical topology can be easly customized to fit the features of the routers that are used in the network.
He, Lin, Ren, Gang, Liu, Ying.  2019.  Bootstrapping Accountability and Privacy to IPv6 Internet without Starting from Scratch. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :1486–1494.

Accountability and privacy are considered valuable but conflicting properties in the Internet, which at present does not provide native support for either. Past efforts to balance accountability and privacy in the Internet have unsatisfactory deployability due to the introduction of new communication identifiers, and because of large-scale modifications to fully deployed infrastructures and protocols. The IPv6 is being deployed around the world and this trend will accelerate. In this paper, we propose a private and accountable proposal based on IPv6 called PAVI that seeks to bootstrap accountability and privacy to the IPv6 Internet without introducing new communication identifiers and large-scale modifications to the deployed base. A dedicated quantitative analysis shows that the proposed PAVI achieves satisfactory levels of accountability and privacy. The results of evaluation of a PAVI prototype show that it incurs little performance overhead, and is widely deployable.

Gao, Jiaqiong, Wang, Tao.  2019.  Research on the IPv6 Technical Defects and Countermeasures. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :165–170.
The current global Internet USES the TCP/IP protocol cluster, the current version is IPv4. The IPv4 is with 32-bit addresses, the maximum number of computers connected to the Internet in the world is 232. With the development of Internet of things, big data and cloud storage and other technologies, the limited address space defined by IPv4 has been exhausted. To expand the address space, the IETF designed the next generation IPv6 to replace IPv4. IPv6 using a 128-bit address length that provides almost unlimited addresses. However, with the development and application of the Internet of things, big data and cloud storage, IPv6 has some shortcomings in its addressing structure design; security and network compatibility, These technologies are gradually applied in recent years, the continuous development of new technologies application show that the IPv6 address structure design ideas have some fatal defects. This paper proposed a route to upgrade the original IPv4 by studying on the structure of IPv6 "spliced address", and point out the defects in the design of IPv6 interface ID and the potential problems such as security holes.
2018-02-28
Chatfield, B., Haddad, R. J..  2017.  Moving Target Defense Intrusion Detection System for IPv6 based smart grid advanced metering infrastructure. SoutheastCon 2017. :1–7.

Conventional intrusion detection systems for smart grid communications rely heavily on static based attack detection techniques. In essence, signatures created from historical data are compared to incoming network traffic to identify abnormalities. In the case of attacks where no historical data exists, static based approaches become ineffective thus relinquishing system resilience and stability. Moving target defense (MTD) has shown to be effective in discouraging attackers by introducing system entropy to increase exploit costs. Increase in exploit cost leads to a decrease in profitability for an attacker. In this paper, a Moving Target Defense Intrusion Detection System (MTDIDS) is proposed for smart grid IPv6 based advanced metering infrastructure. The advantage of MTDIDS is the ability to detect anomalies across moving targets by means of planar keys thereupon increasing detection rate. Evaluation of MTDIDS was carried out in a smart grid advanced metering infrastructure simulated in MATLAB.

Hong, H., Choi, H., Kim, D., Kim, H., Hong, B., Noh, J., Kim, Y..  2017.  When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :595–609.

Recently, cellular operators have started migrating to IPv6 in response to the increasing demand for IP addresses. With the introduction of IPv6, cellular middleboxes, such as firewalls for preventing malicious traffic from the Internet and stateful NAT64 boxes for providing backward compatibility with legacy IPv4 services, have become crucial to maintain stability of cellular networks. This paper presents security problems of the currently deployed IPv6 middleboxes of five major operators. To this end, we first investigate several key features of the current IPv6 deployment that can harm the safety of a cellular network as well as its customers. These features combined with the currently deployed IPv6 middlebox allow an adversary to launch six different attacks. First, firewalls in IPv6 cellular networks fail to block incoming packets properly. Thus, an adversary could fingerprint cellular devices with scanning, and further, she could launch denial-of-service or over-billing attacks. Second, vulnerabilities in the stateful NAT64 box, a middlebox that maps an IPv6 address to an IPv4 address (and vice versa), allow an adversary to launch three different attacks: 1) NAT overflow attack that allows an adversary to overflow the NAT resources, 2) NAT wiping attack that removes active NAT mappings by exploiting the lack of TCP sequence number verification of firewalls, and 3) NAT bricking attack that targets services adopting IP-based blacklisting by preventing the shared external IPv4 address from accessing the service. We confirmed the feasibility of these attacks with an empirical analysis. We also propose effective countermeasures for each attack.

Hendriks, L., Velan, P., Schmidt, R. d O., Boer, P. T. de, Pras, A..  2017.  Threats and surprises behind IPv6 extension headers. 2017 Network Traffic Measurement and Analysis Conference (TMA). :1–9.

The concept of Extension Headers, newly introduced with IPv6, is elusive and enables new types of threats in the Internet. Simply dropping all traffic containing any Extension Header - a current practice by operators-seemingly is an effective solution, but at the cost of possibly dropping legitimate traffic as well. To determine whether threats indeed occur, and evaluate the actual nature of the traffic, measurement solutions need to be adapted. By implementing these specific parsing capabilities in flow exporters and performing measurements on two different production networks, we show it is feasible to quantify the metrics directly related to these threats, and thus allow for monitoring and detection. Analysing the traffic that is hidden behind Extension Headers, we find mostly benign traffic that directly affects end-user QoE: simply dropping all traffic containing Extension Headers is thus a bad practice with more consequences than operators might be aware of.