Visible to the public Biblio

Filters: Keyword is matrix algebra  [Clear All Filters]
2021-02-23
Xia, H., Gao, N., Peng, J., Mo, J., Wang, J..  2020.  Binarized Attributed Network Embedding via Neural Networks. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Traditional attributed network embedding methods are designed to map structural and attribute information of networks jointly into a continuous Euclidean space, while recently a novel branch of them named binarized attributed network embedding has emerged to learn binary codes in Hamming space, aiming to save time and memory costs and to naturally fit node retrieval task. However, current binarized attributed network embedding methods are scarce and mostly ignore the local attribute similarity between each pair of nodes. Besides, none of them attempt to control the independency of each dimension(bit) of the learned binary representation vectors. As existing methods still need improving, we propose an unsupervised Neural-based Binarized Attributed Network Embedding (NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman proximity matrix from predecessors to aggregate high-order features for each node. Secondly, we feed the aggregated features into an autoencoder with the attribute similarity penalizing term and the orthogonality term to make further dimension reduction. To solve the problem of integer optimization we adopt the relaxation-quantization method during the process of training neural networks. Empirically, we evaluate the performance of NBANE through node classification and clustering tasks on three real-world datasets and study a case on fast retrieval in academic networks. Our method achieves better performance over state- of-the-art baselines methods of various types.
2021-02-15
Bisht, K., Deshmukh, M..  2020.  Encryption algorithm based on knight’s tour and n-neighbourhood addition. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :31–36.
This paper presents a new algorithm for image encryption by extending the Knight's Tour Problem (KTP). The idea behind the proposed algorithm is to generate a Knight Tour (KT) matrix (m,n) and then divide the image according to the size of knight tour matrix into several sub matrices. Finally, apply n-neighborhood addition modulo encryption algorithm according to the solution of KT matrix over each m × n partition of the image. The proposed algorithm provides image encryption without using the cover images. Results obtained from experiments have shown that the proposed algorithm is efficient, simple and does not disclose any information from encrypted image.
2021-02-08
Arunpandian, S., Dhenakaran, S. S..  2020.  DNA based Computing Encryption Scheme Blending Color and Gray Images. 2020 International Conference on Communication and Signal Processing (ICCSP). :0966–0970.

In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.

2021-02-03
He, S., Lei, D., Shuang, W., Liu, C., Gu, Z..  2020.  Network Security Analysis of Industrial Control System Based on Attack-Defense Tree. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). :651—655.
In order to cope with the network attack of industrial control system, this paper proposes a quantifiable attack-defense tree model. In order to reduce the influence of subjective factors on weight calculation and the probability of attack events, the Fuzzy Analytic Hierarchy Process and the Attack-Defense Tree model are combined. First, the model provides a variety of security attributes for attack and defense leaf nodes. Secondly, combining the characteristics of leaf nodes, a fuzzy consistency matrix is constructed to calculate the security attribute weight of leaf nodes, and the probability of attack and defense leaf nodes. Then, the influence of defense node on attack behavior is analyzed. Finally, the network risk assessment of typical airport oil supply automatic control system has been undertaken as a case study using this attack-defense tree model. The result shows that this model can truly reflect the impact of defense measures on the attack behavior, and provide a reference for the network security scheme.
2021-02-01
Jin, H., Wang, T., Zhang, M., Li, M., Wang, Y., Snoussi, H..  2020.  Neural Style Transfer for Picture with Gradient Gram Matrix Description. 2020 39th Chinese Control Conference (CCC). :7026–7030.
Despite the high performance of neural style transfer on stylized pictures, we found that Gatys et al [1] algorithm cannot perfectly reconstruct texture style. Output stylized picture could emerge unsatisfied unexpected textures such like muddiness in local area and insufficient grain expression. Our method bases on original algorithm, adding the Gradient Gram description on style loss, aiming to strengthen texture expression and eliminate muddiness. To some extent our method lengthens the runtime, however, its output stylized pictures get higher performance on texture details, especially in the elimination of muddiness.
2020-12-14
Efendioglu, H. S., Asik, U., Karadeniz, C..  2020.  Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.
As a TEMPEST information security problem, electromagnetic emissions from the computer displays can be captured, and reconstructed using signal processing techniques. It is necessary to identify the display type to intercept the image of the display. To determine the display type not only significant for attackers but also for protectors to prevent display compromising emanations. This study relates to the identification of the display type using Support Vector Machines (SVM) from electromagnetic emissions emitted from computer displays. After measuring the emissions using receiver measurement system, the signals were processed and training/test data sets were formed and the classification performance of the displays was examined with the SVM. Moreover, solutions for a better classification under real conditions have been proposed. Thus, one of the important step of the display image capture can accomplished by automatically identification the display types. The performance of the proposed method was evaluated in terms of confusion matrix and accuracy, precision, F1-score, recall performance measures.
2020-12-02
Jie, Y., Zhou, L., Ming, N., Yusheng, X., Xinli, S., Yongqiang, Z..  2018.  Integrated Reliability Analysis of Control and Information Flow in Energy Internet. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1—9.
In this paper, according to the electricity business process including collecting and transmitting power information and sending control instructions, a coupling model of control-communication flow is built which is composed of three main matrices: control-communication, communication-communication, communication-control incidence matrices. Furthermore, the effective path change between two communication nodes is analyzed and a calculation method of connectivity probability for information network is proposed when considering a breakdown in communication links. Then, based on Bayesian conditional probability theory, the effect of the communication interruption on the energy Internet is analyzed and the metric matrix of controllability is given under communication congestion. Several cases are given in the final of paper to verify the effectiveness of the proposed method for calculating controllability matrix by considering different link interruption scenarios. This probability index can be regarded as a quantitative measure of the controllability of the power service based on the communication transmission instructions, which can be used in the power business decision-making in order to improve the control reliability of the energy Internet.
2020-10-29
Mahajan, Ginika, Saini, Bhavna, Anand, Shivam.  2019.  Malware Classification Using Machine Learning Algorithms and Tools. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). :1—8.

Malware classification is the process of categorizing the families of malware on the basis of their signatures. This work focuses on classifying the emerging malwares on the basis of comparable features of similar malwares. This paper proposes a novel framework that categorizes malware samples into their families and can identify new malware samples for analysis. For this six diverse classification techniques of machine learning are used. To get more comparative and thus accurate classification results, analysis is done using two different tools, named as Knime and Orange. The work proposed can help in identifying and thus cleaning new malwares and classifying malware into their families. The correctness of family classification of malwares is investigated in terms of confusion matrix, accuracy and Cohen's Kappa. After evaluation it is analyzed that Random Forest gives the highest accuracy.

2020-10-05
Zamani, Majid, Arcak, Murat.  2018.  Compositional Abstraction for Networks of Control Systems: A Dissipativity Approach. IEEE Transactions on Control of Network Systems. 5:1003—1015.

In this paper, we propose a compositional scheme for the construction of abstractions for networks of control systems by using the interconnection matrix and joint dissipativity-type properties of subsystems and their abstractions. In the proposed framework, the abstraction, itself a control system (possibly with a lower dimension), can be used as a substitution of the original system in the controller design process. Moreover, we provide a procedure for constructing abstractions of a class of nonlinear control systems by using the bounds on the slope of system nonlinearities. We illustrate the proposed results on a network of linear control systems by constructing its abstraction in a compositional way without requiring any condition on the number or gains of the subsystems. We use the abstraction as a substitute to synthesize a controller enforcing a certain linear temporal logic specification. This example particularly elucidates the effectiveness of dissipativity-type compositional reasoning for large-scale systems.

2020-09-18
Yao, Bing, Zhao, Meimei, Mu, Yarong, Sun, Yirong, Zhang, Xiaohui, Zhang, Mingjun, Yang, Sihua.  2019.  Matrices From Topological Graphic Coding of Network Security. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1992—1996.
Matrices as mathematical models have been used in each branch of scientific fields for hundred years. We propose a new type of matrices, called topological coding matrices (Topcode-matrices). Topcode-matrices show us the following advantages: Topcode-matrices can be saved in computer easily and run quickly in computation; since a Topcode-matrix corresponds two or more Topsnut-gpws, so Topcode-matrices can be used to encrypt networks such that the encrypted networks have higher security; Topcode-matrices can be investigated and applied by people worked in more domains; Topcode-matrices can help us to form new operations, new parameters and new topics of graph theory, such as vertex/edge splitting operations and connectivities of graphs. Several properties and applications on Topcode-matrices, and particular Topcode-matrices, as well as unknown problems are introduced.
Yudin, Oleksandr, Ziubina, Ruslana, Buchyk, Serhii, Frolov, Oleg, Suprun, Olha, Barannik, Natalia.  2019.  Efficiency Assessment of the Steganographic Coding Method with Indirect Integration of Critical Information. 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT). :36—40.
The presented method of encoding and steganographic embedding of a series of bits for the hidden message was first developed by modifying the digital platform (bases) of the elements of the image container. Unlike other methods, steganographic coding and embedding is accomplished by changing the elements of the image fragment, followed by the formation of code structures for the established structure of the digital representation of the structural elements of the image media image. The method of estimating quantitative indicators of embedded critical data is presented. The number of bits of the container for the developed method of steganographic coding and embedding of critical information is estimated. The efficiency of the presented method is evaluated and the comparative analysis of the value of the embedded digital data in relation to the method of weight coefficients of the discrete cosine transformation matrix, as well as the comparative analysis of the developed method of steganographic coding, compared with the Koch and Zhao methods to determine the embedded data resistance against attacks of various types. It is determined that for different values of the quantization coefficient, the most critical are the built-in containers of critical information, which are built by changing the part of the digital video data platform depending on the size of the digital platform and the number of bits of the built-in container.
2020-09-08
Kassim, Sarah, Megherbi, Ouerdia, Hamiche, Hamid, Djennoune, Saïd, Bettayeb, Maamar.  2019.  Speech encryption based on the synchronization of fractional-order chaotic maps. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1–6.
This work presents a new method of encrypting and decrypting speech based on a chaotic key generator. The proposed scheme takes advantage of the best features of chaotic systems. In the proposed method, the input speech signal is converted into an image which is ciphered by an encryption function using a chaotic key matrix generated from a fractional-order chaotic map. Based on a deadbeat observer, the exact synchronization of system used is established, and the decryption is performed. Different analysis are applied for analyzing the effectiveness of the encryption system. The obtained results confirm that the proposed system offers a higher level of security against various attacks and holds a strong key generation mechanism for satisfactory speech communication.
2020-09-04
Subangan, S., Senthooran, V..  2019.  Secure Authentication Mechanism for Resistance to Password Attacks. 2019 19th International Conference on Advances in ICT for Emerging Regions (ICTer). 250:1—7.
Authentication is a process that provides access control of any type of computing applications by inspecting the user's identification with the database of authorized users. Passwords play the vital role in authentication mechanism to ensure the privacy of the information and avert from the illicit access. Password based authentication mechanism suffers from many password attacks such as shoulder surfing, brute forcing and dictionary attacks that crack the password of authentication schema by the adversary. Key Stroke technique, Click Pattern technique, Graphichical Password technique and Authentication panel are the several authentication techniques used to resist the password attacks in the literature. This research study critically reviews the types of password attacks and proposes a matrix based secure authentication mechanism which includes three phases namely, User generation phase, Matrix generation phase and Authentication phase to resist the existing password attacks. The performance measure of the proposed method investigates the results in terms existing password attacks and shows the good resistance to password attacks in any type of computing applications.
2020-08-28
Jia, Ziyi, Wu, Chensi, Zhang, Yuqing.  2019.  Research on the Destructive Capability Metrics of Common Network Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1419—1424.

An improved algorithm of the Analytic Hierarchy Process (AHP) is proposed in this paper, which is realized by constructing an improved judgment matrix. Specifically, rough set theory is used in the algorithm to calculate the weight of the network metric data, and then the improved AHP algorithm nine-point systemic is structured, finally, an improved AHP judgment matrix is constructed. By performing an AHP operation on the improved judgment matrix, the weight of the improved network metric data can be obtained. If only the rough set theory is applied to process the network index data, the objective factors would dominate the whole process. If the improved algorithm of AHP is used to integrate the expert score into the process of measurement, then the combination of subjective factors and objective factors can be realized. Based on the aforementioned theory, a new network attack metrics system is proposed in this paper, which uses a metric structure based on "attack type-attack attribute-attack atomic operation-attack metrics", in which the metric process of attack attribute adopts AHP. The metrics of the system are comprehensive, given their judgment of frequent attacks is universal. The experiment was verified by an experiment of a common attack Smurf. The experimental results show the effectiveness and applicability of the proposed measurement system.

2020-08-17
Yao, Yepeng, Su, Liya, Lu, Zhigang, Liu, Baoxu.  2019.  STDeepGraph: Spatial-Temporal Deep Learning on Communication Graphs for Long-Term Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :120–127.
Network communication data are high-dimensional and spatiotemporal, and their information content is often degraded by common traffic analysis methods. For long-term network attack detection based on network flows, it is important to extract a discriminative, high-dimensional intrinsic representation of such flows. This work focuses on a hybrid deep neural network design using a combination of a convolutional neural network (CNN) and long short-term memory (LSTM) with graph similarity measures to learn high-dimensional representations from the network traffic. In particular, examining a set of network flows, we commence by constructing a temporal communication graph and then computing graph kernel matrices. Having obtained the kernel matrices, for each graph, we use the kernel value between graphs and calculate graph characterization vectors by graph signal processing. This vector can be regarded as a kernel-based similarity embedding vector of the graph that integrates structural similarity information and leverages efficient graph kernel using the graph Laplacian matrix. Our approach exploits graph structures as the additional prior information, the graph Laplacian matrix for feature extraction and hybrid deep learning models for long-term information learning on communication graphs. Experiments on two real-world network attack datasets show that our approach can extract more discriminative representations, leading to an improved accuracy in a supervised classification task. The experimental results show that our method increases the overall accuracy by approximately 10%-15%.
2020-07-20
Haque, Md Ariful, Shetty, Sachin, Krishnappa, Bheshaj.  2019.  Modeling Cyber Resilience for Energy Delivery Systems Using Critical System Functionality. 2019 Resilience Week (RWS). 1:33–41.

In this paper, we analyze the cyber resilience for the energy delivery systems (EDS) using critical system functionality (CSF). Some research works focus on identification of critical cyber components and services to address the resiliency for the EDS. Analysis based on the devices and services excluding the system behavior during an adverse event would provide partial analysis of cyber resilience. To address the gap, in this work, we utilize the vulnerability graph representation of EDS to compute the system functionality under adverse condition. We use network criticality metric to determine CSF. We estimate the criticality metric using graph Laplacian matrix and network performance after removing links (i.e., disabling control functions, or services). We model the resilience of the EDS using CSF, and system recovery curve. We also provide a comprehensive analysis of cyber resilience by determining the critical devices using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytical Hierarchy Process) methods. We present use cases of EDS illustrating the way control functions and services in EDS map to the vulnerability graph model. The simulation results show that we can estimate the resilience metric using different types of graphs that may assist in making an informed decision about EDS resilience.

2020-07-06
Evgeny, Pavlenko, Dmitry, Zegzhda, Anna, Shtyrkina.  2019.  Estimating the sustainability of cyber-physical systems based on spectral graph theory. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.
Paper proposed an approach to estimating the sustainability of cyber-physical systems based on system state analysis. Authors suggested that sustainability is the system ability to reconfigure for recovering from attacking influences. Proposed a new criterion for cyber-physical systems sustainability assessment based on spectral graph theory. Numerical calculation of the criterion is based on distribution properties of the graph spectrum - the set of eigenvalues of the adjacency matrix corresponding to the graph. Experimental results have shown dependency of change in Δσ, difference between initial value of σstart and final σstop, on working route length, and on graph connectivity was revealed. This parameter is proposed to use as a criterion for CPS sustainability.
2020-06-26
Elhassani, M., Chillali, A., Mouhib, A..  2019.  Elliptic curve and Lattice cryptosystem. 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). :1—4.

In this work, we will present a new hybrid cryptography method based on two hard problems: 1- The problem of the discrete logarithm on an elliptic curve defined on a finite local ring. 2- The closest vector problem in lattice and the conjugate problem on square matrices. At first, we will make the exchange of keys to the Diffie-Hellman. The encryption of a message is done with a bad basis of a lattice.

2020-06-12
[Anonymous].  2018.  Discrete Locally-Linear Preserving Hashing. {2018 25th IEEE International Conference on Image Processing (ICIP). :490—494.

Recently, hashing has attracted considerable attention for nearest neighbor search due to its fast query speed and low storage cost. However, existing unsupervised hashing algorithms have two problems in common. Firstly, the widely utilized anchor graph construction algorithm has inherent limitations in local weight estimation. Secondly, the locally linear structure in the original feature space is seldom taken into account for binary encoding. Therefore, in this paper, we propose a novel unsupervised hashing method, dubbed “discrete locally-linear preserving hashing”, which effectively calculates the adjacent matrix while preserving the locally linear structure in the obtained hash space. Specifically, a novel local anchor embedding algorithm is adopted to construct the approximate adjacent matrix. After that, we directly minimize the reconstruction error with the discrete constrain to learn the binary codes. Experimental results on two typical image datasets indicate that the proposed method significantly outperforms the state-of-the-art unsupervised methods.

2020-05-22
Song, Fuyuan, Qin, Zheng, Liu, Qin, Liang, Jinwen, Ou, Lu.  2019.  Efficient and Secure k-Nearest Neighbor Search Over Encrypted Data in Public Cloud. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.
Cloud computing has become an important and popular infrastructure for data storage and sharing. Typically, data owners outsource their massive data to a public cloud that will provide search services to authorized data users. With privacy concerns, the valuable outsourced data cannot be exposed directly, and should be encrypted before outsourcing to the public cloud. In this paper, we focus on k-Nearest Neighbor (k-NN) search over encrypted data. We propose efficient and secure k-NN search schemes based on matrix similarity to achieve efficient and secure query services in public cloud. In our basic scheme, we construct the traces of two diagonal multiplication matrices to denote the Euclidean distance of two data points, and perform secure k-NN search by comparing traces of corresponding similar matrices. In our enhanced scheme, we strengthen the security property by decomposing matrices based on our basic scheme. Security analysis shows that our schemes protect the data privacy and query privacy under attacking with different levels of background knowledge. Experimental evaluations show that both schemes are efficient in terms of computation complexity as well as computational cost.
2020-05-08
Su, Chunmei, Li, Yonggang, Mao, Wen, Hu, Shangcheng.  2018.  Information Network Risk Assessment Based on AHP and Neural Network. 2018 10th International Conference on Communication Software and Networks (ICCSN). :227—231.
This paper analyzes information network security risk assessment methods and models. Firstly an improved AHP method is proposed to assign the value of assets for solving the problem of risk judgment matrix consistency effectively. And then the neural network technology is proposed to construct the neural network model corresponding to the risk judgment matrix for evaluating the individual risk of assets objectively, the methods for calculating the asset risk value and system risk value are given. Finally some application results are given. Practice proves that the methods are correct and effective, which has been used in information network security risk assessment application and offers a good foundation for the implementation of the automatic assessment.
2020-03-30
Mashaly, Maggie, El Saied, Ahmed, Alexan, Wassim, Khalifa, Abeer S..  2019.  A Multiple Layer Security Scheme Utilizing Information Matrices. 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). :284–289.
This paper proposes a double-layer message security scheme that is implemented in two stages. First, the secret data is encrypted using the AES algorithm with a 256-bit key. Second, least significant bit (LSB) embedding is carried out, by hiding the secret message into an image of an information matrix. A number of performance evaluation metrics are discussed and computed for the proposed scheme. The obtained results are compared to other schemes in literature and show the superiority of the proposed scheme.
2020-03-04
Korzhik, Valery, Starostin, Vladimir, Morales-Luna, Guillermo, Kabardov, Muaed, Gerasimovich, Aleksandr, Yakovlev, Victor, Zhuvikin, Aleksey.  2019.  Information Theoretical Secure Key Sharing Protocol for Noiseless Public Constant Parameter Channels without Cryptographic Assumptions. 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). :327–332.

We propose a new key sharing protocol executed through any constant parameter noiseless public channel (as Internet itself) without any cryptographic assumptions and protocol restrictions on SNR in the eavesdropper channels. This protocol is based on extraction by legitimate users of eigenvalues from randomly generated matrices. A similar protocol was proposed recently by G. Qin and Z. Ding. But we prove that, in fact, this protocol is insecure and we modify it to be both reliable and secure using artificial noise and privacy amplification procedure. Results of simulation prove these statements.

2020-03-02
Wang, Meng, Chow, Joe H., Hao, Yingshuai, Zhang, Shuai, Li, Wenting, Wang, Ren, Gao, Pengzhi, Lackner, Christopher, Farantatos, Evangelos, Patel, Mahendra.  2019.  A Low-Rank Framework of PMU Data Recovery and Event Identification. 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA). :1–9.

The large amounts of synchrophasor data obtained by Phasor Measurement Units (PMUs) provide dynamic visibility into power systems. Extracting reliable information from the data can enhance power system situational awareness. The data quality often suffers from data losses, bad data, and cyber data attacks. Data privacy is also an increasing concern. In this paper, we discuss our recently proposed framework of data recovery, error correction, data privacy enhancement, and event identification methods by exploiting the intrinsic low-dimensional structures in the high-dimensional spatial-temporal blocks of PMU data. Our data-driven approaches are computationally efficient with provable analytical guarantees. The data recovery method can recover the ground-truth data even if simultaneous and consecutive data losses and errors happen across all PMU channels for some time. We can identify PMU channels that are under false data injection attacks by locating abnormal dynamics in the data. The data recovery method for the operator can extract the information accurately by collectively processing the privacy-preserving data from many PMUs. A cyber intruder with access to partial measurements cannot recover the data correctly even using the same approach. A real-time event identification method is also proposed, based on the new idea of characterizing an event by the low-dimensional subspace spanned by the dominant singular vectors of the data matrix.

2020-02-18
Griffioen, Paul, Weerakkody, Sean, Sinopoli, Bruno.  2019.  An Optimal Design of a Moving Target Defense for Attack Detection in Control Systems. 2019 American Control Conference (ACC). :4527–4534.
In this paper, we consider the problem of designing system parameters to improve detection of attacks in control systems. Specifically, we study control systems which are vulnerable to integrity attacks on sensors and actuators. We aim to defend against strong model aware adversaries that can read and modify all sensors and actuators. Previous work has proposed a moving target defense for detecting integrity attacks on control systems. Here, an authenticating subsystem with time-varying dynamics coupled to the original plant is introduced. Due to this coupling, an attack on the original system will affect the authenticating subsystem and in turn be revealed by a set of sensors measuring the extended plant. Moreover, the time-varying dynamics of the extended plant act as a moving target, preventing an adversary from developing an effective adaptive attack strategy. Previous work has failed to consider the design of the time-varying system matrices and as such provides little in terms of guidelines for implementation in real systems. This paper proposes two optimization problems for designing these matrices. The first designs the auxiliary actuators to maximize detection performance while the second designs the coupling matrices to maximize system estimation performance. Numerical examples are presented that validate our approach.