Biblio
This paper describes a novel distributed mobility management (DMM) scheme for the "named-object" information centric network (ICN) architecture in which the routers forward data based on unique identifiers which are dynamically mapped to the current network addresses of a device. The work proposes and evaluates two specific handover schemes namely, hard handoff with rebinding and soft handoff with multihoming intended to provide seamless data transfer with improved throughput during handovers. The evaluation of the proposed handover schemes using system simulation along with proof-of-concept implementation in ORBIT testbed is described. The proposed handoff and scheduling throughput gains are 12.5% and 44% respectively over multiple interfaces when compared to traditional IP network with equal share split scheme. The handover performance with respect to RTT and throughput demonstrate the benefits of clean slate network architecture for beyond 5G networks.
With the increasing diversity of application needs (datacenters, IoT, content retrieval, industrial automation, etc.), new network architectures are continually being proposed to address specific and particular requirements. From a network management perspective, it is both important and challenging to enable evolution towards such new architectures. Given the ubiquity of the Internet, a clean-slate change of the entire infrastructure to a new architecture is impractical. It is believed that we will see new network architectures coming into existence with support for interoperability between separate architectural islands. We may have servers, and more importantly, content, residing in domains having different architectures. This paper presents COIN, a content-oriented interoperability framework for current and future Internet architectures. We seek to provide seamless connectivity and content accessibility across multiple of these network architectures, including the current Internet. COIN preserves each domain's key architectural features and mechanisms, while allowing flexibility for evolvability and extensibility. We focus on Information-Centric Networks (ICN), the prominent class of Future Internet architectures. COIN avoids expanding domain-specific protocols or namespaces. Instead, it uses an application-layer Object Resolution Service to deliver the right "foreign" names to consumers. COIN uses translation gateways that retain essential interoperability state, leverages encryption for confidentiality, and relies on domain-specific signatures to guarantee provenance and data integrity. Using NDN and MobilityFirst as important candidate solutions of ICN, and IP, we evaluate COIN. Measurements from an implementation of the gateways show that the overhead is manageable and scales well.
Media streaming has largely dominated the Internet traffic and the trend will keep increasing in the next years. To efficiently distribute the media content, Information-Centric Networking (ICN) has attracted many researchers. Since end users usually obtain content from indeterminate caches in ICN, the publisher cannot reinforce data security and access control depending on the caches. Hence, the ability of self-contained protection is important for the cached contents. Attribute-based encryption (ABE) is considered the preferred solution to achieve this goal. However, the existing ABE schemes usually have problems regarding efficiency. The exponentiation in key generation and pairing operation in decryption respectively increases linearly with the number of attributes involved, which make it costly. In this paper, we propose an efficient key-policy ABE with fast key generation and decryption (FKP-ABE). In the key generation, we get rid of exponentiation and only require multiplications/divisions for each attribute in the access policy. And in the decryption, we reduce the pairing operations to a constant number, no matter how many attributes are used. The efficiency analysis indicates that our scheme has better performance than the existing KP-ABE schemes. Finally, we present an implementation framework that incorporates the proposed FKP-ABE with the ICN architecture.
Nowadays network applications have more focus on content distribution which is hard to tackle in IP based Internet. Information Centric Network (ICN) have the ability to overcome this problem for various scenarios, specifically for Vehicular Ad Hoc Networks (VANETs). Conventional IP based system have issues like mobility management hence ICN solve this issue because data fetching is not dependent on a particular node or physical location. Many initial investigations have performed on an instance of ICN commonly known as Named Data Networking (NDN). However, NDN exposes the new type of security susceptibilities, poisoning cache attack, flooding Interest attack, and violation of privacy because the content in the network is called by the name. This paper focused on mitigation of Interest flooding attack by proposing new scheme, named Interest Flooding Attack Mitigation Scheme (IFAMS) in Vehicular Named Data Network (VNDN). Simulation results depict that proposed IFAMS scheme mitigates the Interest flooding attack in the network.
Mobile military networks are uniquely challenging to build and maintain, because of their wireless nature and the unfriendliness of the environment, resulting in unreliable and capacity limited performance. Currently, most tactical networks implement TCP/IP, which was designed for fairly stable, infrastructure-based environments, and requires sophisticated and often application-specific extensions to address the challenges of the communication scenario. Information Centric Networking (ICN) is a clean slate networking approach that does not depend on stable connections to retrieve information and naturally provides support for node mobility and delay/disruption tolerant communications - as a result it is particularly interesting for tactical applications. However, despite ICN seems to offer some structural benefits for tactical environments over TCP/IP, a number of challenges including naming, security, performance tuning, etc., still need to be addressed for practical adoption. This document, prepared within NATO IST-161 RTG, evaluates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption.
In-network caching is a feature shared by all proposed Information Centric Networking (ICN) architectures as it is critical to achieving a more efficient retrieval of content. However, the default "cache everything everywhere" universal caching scheme has caused the emergence of several privacy threats. Timing attacks are one such privacy breach where attackers can probe caches and use timing analysis of data retrievals to identify if content was retrieved from the data source or from the cache, the latter case inferring that this content was requested recently. We have previously proposed a betweenness centrality based caching strategy to mitigate such attacks by increasing user anonymity. We demonstrated its efficacy in a transit-stub topology. In this paper, we further investigate the effect of betweenness centrality based caching on cache privacy and user anonymity in more general synthetic and real world Internet topologies. It was also shown that an attacker with access to multiple compromised routers can locate and track a mobile user by carrying out multiple timing analysis attacks from various parts of the network. We extend our privacy evaluation to a scenario with mobile users and show that a betweenness centrality based caching policy provides a mobile user with path privacy by increasing an attacker's difficulty in locating a moving user or identifying his/her route.
Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.
Information Centric Networking (ICN) changed the communication model from host-based to content-based to cope with the high volume of traffic due to the rapidly increasing number of users, data objects, devices, and applications. ICN communication model requires new security solutions that will be integrated with ICN architectures. In this paper, we present a security framework to manage ICN traffic by detecting, preventing, and responding to ICN attacks. The framework consists of three components: availability, access control, and privacy. The availability component ensures that contents are available for legitimate users. The access control component allows only legitimate users to get restrictedaccess contents. The privacy component prevents attackers from knowing content popularities or user requests. We also show our specific solutions as examples of the framework components.