Biblio
Deep learning has made remarkable achievements in various domains. Active learning, which aims to reduce the budget for training a machine-learning model, is especially useful for the Deep learning tasks with the demand of a large number of labeled samples. Unfortunately, our empirical study finds that many of the active learning heuristics are not effective when applied to Deep learning models in batch settings. To tackle these limitations, we propose a density weighted diversity based query strategy (DWDS), which makes use of the geometry of the samples. Within a limited labeling budget, DWDS enhances model performance by querying labels for the new training samples with the maximum informativeness and representativeness. Furthermore, we propose a beam-search based method to obtain a good approximation to the optimum of such samples. Our experiments show that DWDS outperforms existing algorithms in Deep learning tasks.
In order to solve the problem of difficult verification of query results in searchable encryption, we used the idea of Shamir-secret sharing, combined with game theory, to construct a randomly verifiable multi-cloud server searchable encryption scheme to achieve the correctness of the query results in the cloud storage environment verify. Firstly, we using the Shamir-secret sharing technology, the encrypted data is stored on each independent server to construct a multi-cloud server model to realize the secure distributed storage and efficient query of data. Secondly, combined with game theory, a game tree of query server and verification server is constructed to ensure honesty while being efficient, and solve the problem of difficulty in returning search results to verify under the multi-cloud server model. Finally, security analysis and experimental analysis show that this solution effectively protects data privacy while significantly reducing retrieval time.
Social Internet of Things (SIoT) is an extension of Internet of Things (IoT) that converges with Social networking concepts to create Social networks of interconnected smart objects. This convergence allows the enrichment of the two paradigms, resulting into new ecosystems. While IoT follows two interaction paradigms, human-to-human (H2H) and thing-to-thing (T2T), SIoT adds on human-to-thing (H2T) interactions. SIoT enables smart “Social objects” that intelligently mimic the social behavior of human in the daily life. These social objects are equipped with social functionalities capable of discovering other social objects in the surroundings and establishing social relationships. They crawl through the social network of objects for the sake of searching for services and information of interest. The notion of trust and trustworthiness in social communities formed in SIoT is still new and in an early stage of investigation. In this paper, our contributions are threefold. First, we present the fundamentals of SIoT and trust concepts in SIoT, clarifying the similarities and differences between IoT and SIoT. Second, we categorize the trust management solutions proposed so far in the literature for SIoT over the last six years and provide a comprehensive review. We then perform a comparison of the state of the art trust management schemes devised for SIoT by performing comparative analysis in terms of trust management process. Third, we identify and discuss the challenges and requirements in the emerging new wave of SIoT, and also highlight the challenges in developing trust and evaluating trustworthiness among the interacting social objects.