Biblio
In this paper we solve the problem of neural network technology development for e-mail messages classification. We analyze basic methods of spam filtering such as a sender IP-address analysis, spam messages repeats detection and the Bayesian filtering according to words. We offer the neural network technology for solving this problem because the neural networks are universal approximators and effective in addressing the problems of classification. Also, we offer the scheme of this technology for e-mail messages “spam”/“not spam” classification. The creation of effective neural network model of spam filtering is performed within the databases knowledge discovery technology. For this training set is formed, the neural network model is trained, its value and classifying ability are estimated. The experimental studies have shown that a developed artificial neural network model is adequate and it can be effectively used for the e-mail messages classification. Thus, in this paper we have shown the possibility of the effective neural network model use for the e-mail messages filtration and have shown a scheme of artificial neural network model use as a part of the e-mail spam filtering intellectual system.
This paper describes the technology of neural network application to solve the problem of information security incidents forecasting. We describe the general problem of analyzing and predicting time series in a graphical and mathematical setting. To solve this problem, it is proposed to use a neural network model. To solve the task of forecasting a time series of information security incidents, data are generated and described on the basis of which the neural network is trained. We offer a neural network structure, train the neural network, estimate it's adequacy and forecasting ability. We show the possibility of effective use of a neural network model as a part of an intelligent forecasting system.
Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.
With the remarkable success of deep learning, Deep Neural Networks (DNNs) have been applied as dominant tools to various machine learning domains. Despite this success, however, it has been found that DNNs are surprisingly vulnerable to malicious attacks; adding a small, perceptually indistinguishable perturbations to the data can easily degrade classification performance. Adversarial training is an effective defense strategy to train a robust classifier. In this work, we propose to utilize the generator to learn how to create adversarial examples. Unlike the existing approaches that create a one-shot perturbation by a deterministic generator, we propose a recursive and stochastic generator that produces much stronger and diverse perturbations that comprehensively reveal the vulnerability of the target classifier. Our experiment results on MNIST and CIFAR-10 datasets show that the classifier adversarially trained with our method yields more robust performance over various white-box and black-box attacks.
Phishing is typically deployed as an attack vector in the initial stages of a hacking endeavour. Due to it low-risk rightreward nature it has seen a widespread adoption, and detecting it has become a challenge in recent times. This paper proposes a novel means of detecting phishing websites using a Generative Adversarial Network. Taking into account the internal structure and external metadata of a website, the proposed approach uses a generator network which generates both legitimate as well as synthetic phishing features to train a discriminator network. The latter then determines if the features are either normal or phishing websites, before improving its detection accuracy based on the classification error. The proposed approach is evaluated using two different phishing datasets and is found to achieve a detection accuracy of up to 94%.
The problems of random numbers application to the information security of data, communication lines, computer units and automated driving systems are considered. The possibilities for making up quantum generators of random numbers and existing solutions for acquiring of sufficiently random sequences are analyzed. The authors found out the method for the creation of quantum generators on the basis of semiconductor electronic components. The electron-quantum generator based on electrons tunneling is experimentally demonstrated. It is shown that it is able to create random sequences of high security level and satisfying known NIST statistical tests (P-Value\textbackslashtextgreater0.9). The generator created can be used for formation of both closed and open cryptographic keys in computer systems and other platforms and has great potential for realization of random walks and probabilistic computing on the basis of neural nets and other IT problems.
We recently see a real digital revolution where all companies prefer to use cloud computing because of its capability to offer a simplest way to deploy the needed services. However, this digital transformation has generated different security challenges as the privacy vulnerability against cyber-attacks. In this work we will present a new architecture of a hybrid Intrusion detection System, IDS for virtual private clouds, this architecture combines both network-based and host-based intrusion detection system to overcome the limitation of each other, in case the intruder bypassed the Network-based IDS and gained access to a host, in intend to enhance security in private cloud environments. We propose to use a non-traditional mechanism in the conception of the IDS (the detection engine). Machine learning, ML algorithms will can be used to build the IDS in both parts, to detect malicious traffic in the Network-based part as an additional layer for network security, and also detect anomalies in the Host-based part to provide more privacy and confidentiality in the virtual machine. It's not in our scope to train an Artificial Neural Network ”ANN”, but just to propose a new scheme for IDS based ANN, In our future work we will present all the details related to the architecture and parameters of the ANN, as well as the results of some real experiments.
Cyber-Physical Systems (CPS) are growing with added complexity and functionality. Multidisciplinary interactions with physical systems are the major keys to CPS. However, sensors, actuators, controllers, and wireless communications are prone to attacks that compromise the system. Machine learning models have been utilized in controllers of automotive to learn, estimate, and provide the required intelligence in the control process. However, their estimation is also vulnerable to the attacks from physical or cyber domains. They have shown unreliable predictions against unknown biases resulted from the modeling. In this paper, we propose a novel control design using conditional generative adversarial networks that will enable a self-secured controller to capture the normal behavior of the control loop and the physical system, detect the anomaly, and recover from them. We experimented our novel control design on a self-secured BMS by driving a Nissan Leaf S on standard driving cycles while under various attacks. The performance of the design has been compared to the state-of-the-art; the self-secured BMS could detect the attacks with 83% accuracy and the recovery estimation error of 21% on average, which have improved by 28% and 8%, respectively.
Model compression is considered to be an effective way to reduce the implementation cost of deep neural networks (DNNs) while maintaining the inference accuracy. Many recent studies have developed efficient model compression algorithms and implementations in accelerators on various devices. Protecting integrity of DNN inference against fault attacks is important for diverse deep learning enabled applications. However, there has been little research investigating the fault resilience of DNNs and the impact of model compression on fault tolerance. In this work, we consider faults on different data types and develop a simulation framework for understanding the fault resiliency of compressed DNN models as compared to uncompressed models. We perform our experiments on two common DNNs, LeNet-5 and VGG16, and evaluate their fault resiliency with different types of compression. The results show that binary quantization can effectively increase the fault resilience of DNN models by 10000x for both LeNet5 and VGG16. Finally, we propose software and hardware mitigation techniques to increase the fault resiliency of DNN models.
In this paper we present techniques based on machine learning techniques on monitoring data for analysis of cybersecurity threats in cloud environments that incorporate enterprise applications from the fields of telecommunications and IoT. Cybersecurity is a term describing techniques for protecting computers, telecommunications equipment, applications, environments and data. In modern networks enormous volume of generated traffic can be observed. We propose several techniques such as Support Vector Machines, Neural networks and Deep Neural Networks in combination for analysis of monitoring data. An approach for combining classifier results based on performance weights is proposed. The proposed approach delivers promising results comparable to existing algorithms and is suitable for enterprise grade security applications.