Visible to the public Biblio

Found 249 results

Filters: Keyword is neural nets  [Clear All Filters]
2020-07-03
Abbasi, Milad Haji, Majidi, Babak, Eshghi, Moahmmad, Abbasi, Ebrahim Haji.  2019.  Deep Visual Privacy Preserving for Internet of Robotic Things. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). :292—296.

In the past few years, visual information collection and transmission is increased significantly for various applications. Smart vehicles, service robotic platforms and surveillance cameras for the smart city applications are collecting a large amount of visual data. The preservation of the privacy of people presented in this data is an important factor in storage, processing, sharing and transmission of visual data across the Internet of Robotic Things (IoRT). In this paper, a novel anonymisation method for information security and privacy preservation in visual data in sharing layer of the Web of Robotic Things (WoRT) is proposed. The proposed framework uses deep neural network based semantic segmentation to preserve the privacy in video data base of the access level of the applications and users. The data is anonymised to the applications with lower level access but the applications with higher legal access level can analyze and annotated the complete data. The experimental results show that the proposed method while giving the required access to the authorities for legal applications of smart city surveillance, is capable of preserving the privacy of the people presented in the data.

2020-06-26
Betha, Durga Janardhana Anudeep, Bhanuj, Tatineni Sai, Umamaheshwari, B, Iyer, R. Abirami, Devi, R. Santhiya, Amirtharajan, Rengarajan, Praveenkumar, Padmapriya.  2019.  Chaotic based Image Encryption - A Neutral Perspective. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1—5.

Today, there are several applications which allow us to share images over the internet. All these images must be stored in a secure manner and should be accessible only to the intended recipients. Hence it is of utmost importance to develop efficient and fast algorithms for encryption of images. This paper uses chaotic generators to generate random sequences which can be used as keys for image encryption. These sequences are seemingly random and have statistical properties. This makes them resistant to analysis and correlation attacks. However, these sequences have fixed cycle lengths. This restricts the number of sequences that can be used as keys. This paper utilises neural networks as a source of perturbation in a chaotic generator and uses its output to encrypt an image. The robustness of the encryption algorithm can be verified using NPCR, UACI, correlation coefficient analysis and information entropy analysis.

2020-06-19
Saboor khan, Abdul, Shafi, Imran, Anas, Muhammad, Yousuf, Bilal M, Abbas, Muhammad Jamshed, Noor, Aqib.  2019.  Facial Expression Recognition using Discrete Cosine Transform Artificial Neural Network. 2019 22nd International Multitopic Conference (INMIC). :1—5.

Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.

2020-06-12
Wang, Min, Li, Haoyang, Shuang, Ya, Li, Lianlin.  2019.  High-resolution Three-dimensional Microwave Imaging Using a Generative Adversarial Network. 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES). 1:1—3.

To solve the high-resolution three-dimensional (3D) microwave imaging is a challenging topic due to its inherent unmanageable computation. Recently, deep learning techniques that can fully explore the prior of meaningful pattern embodied in data have begun to show its intriguing merits in various areas of inverse problem. Motivated by this observation, we here present a deep-learning-inspired approach to the high-resolution 3D microwave imaging in the context of Generative Adversarial Network (GAN), termed as GANMI in this work. Simulation and experimental results have been provided to demonstrate that the proposed GANMI can remarkably outperform conventional methods in terms of both the image quality and computational time.

Hughes, Ben, Bothe, Shruti, Farooq, Hasan, Imran, Ali.  2019.  Generative Adversarial Learning for Machine Learning empowered Self Organizing 5G Networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :282—286.

In the wake of diversity of service requirements and increasing push for extreme efficiency, adaptability propelled by machine learning (ML) a.k.a self organizing networks (SON) is emerging as an inevitable design feature for future mobile 5G networks. The implementation of SON with ML as a foundation requires significant amounts of real labeled sample data for the networks to train on, with high correlation between the amount of sample data and the effectiveness of the SON algorithm. As generally real labeled data is scarce therefore it can become bottleneck for ML empowered SON for unleashing their true potential. In this work, we propose a method of expanding these sample data sets using Generative Adversarial Networks (GANs), which are based on two interconnected deep artificial neural networks. This method is an alternative to taking more data to expand the sample set, preferred in cases where taking more data is not simple, feasible, or efficient. We demonstrate how the method can generate large amounts of realistic synthetic data, utilizing the GAN's ability of generation and discrimination, able to be easily added to the sample set. This method is, as an example, implemented with Call Data Records (CDRs) containing the start hour of a call and the duration of the call, in minutes taken from a real mobile operator. Results show that the method can be used with a relatively small sample set and little information about the statistics of the true CDRs and still make accurate synthetic ones.

Li, Wenyue, Yin, Jihao, Han, Bingnan, Zhu, Hongmei.  2019.  Generative Adversarial Network with Folded Spectrum for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :883—886.

Hyperspectral image (HSIs) with abundant spectral information but limited labeled dataset endows the rationality and necessity of semi-supervised spectral-based classification methods. Where, the utilizing approach of spectral information is significant to classification accuracy. In this paper, we propose a novel semi-supervised method based on generative adversarial network (GAN) with folded spectrum (FS-GAN). Specifically, the original spectral vector is folded to 2D square spectrum as input of GAN, which can generate spectral texture and provide larger receptive field over both adjacent and non-adjacent spectral bands for deep feature extraction. The generated fake folded spectrum, the labeled and unlabeled real folded spectrum are then fed to the discriminator for semi-supervised learning. A feature matching strategy is applied to prevent model collapse. Extensive experimental comparisons demonstrate the effectiveness of the proposed method.

Liu, Yujie, Su, Yixin, Ye, Xiaozhou, Qi, Yue.  2019.  Research on Extending Person Re-identification Datasets Based on Generative Adversarial Network. 2019 Chinese Automation Congress (CAC). :3280—3284.

Person re-identification(Person Re-ID) means that images of a pedestrian from cameras in a surveillance camera network can be automatically retrieved based on one of this pedestrian's image from another camera. The appearance change of pedestrians under different cameras poses a huge challenge to person re-identification. Person re-identification systems based on deep learning can effectively extract the appearance features of pedestrians. In this paper, the feature enhancement experiment is conducted, and the result showed that the current person reidentification datasets are relatively small and cannot fully meet the need of deep training. Therefore, this paper studied the method of using generative adversarial network to extend the person re-identification datasets and proposed a label smoothing regularization for outliers with weight (LSROW) algorithm to make full use of the generated data, effectively improved the accuracy of person re-identification.

Gu, Feng, Zhang, Hong, Wang, Chao, Wu, Fan.  2019.  SAR Image Super-Resolution Based on Noise-Free Generative Adversarial Network. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :2575—2578.

Deep learning has been successfully applied to the ordinary image super-resolution (SR). However, since the synthetic aperture radar (SAR) images are often disturbed by multiplicative noise known as speckle and more blurry than ordinary images, there are few deep learning methods for the SAR image SR. In this paper, a deep generative adversarial network (DGAN) is proposed to reconstruct the pseudo high-resolution (HR) SAR images. First, a generator network is constructed to remove the noise of low-resolution SAR image and generate HR SAR image. Second, a discriminator network is used to differentiate between the pseudo super-resolution images and the realistic HR images. The adversarial objective function is introduced to make the pseudo HR SAR images closer to real SAR images. The experimental results show that our method can maintain the SAR image content with high-level noise suppression. The performance evaluation based on peak signal-to-noise-ratio and structural similarity index shows the superiority of the proposed method to the conventional CNN baselines.

Cui, Yongcheng, Wang, Wenyong.  2019.  Colorless Video Rendering System via Generative Adversarial Networks. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :464—467.

In today's society, even though the technology is so developed, the coloring of computer images has remained at the manual stage. As a carrier of human culture and art, film has existed in our history for hundred years. With the development of science and technology, movies have developed from the simple black-and-white film era to the current digital age. There is a very complicated process for coloring old movies. Aside from the traditional hand-painting techniques, the most common method is to use post-processing software for coloring movie frames. This kind of operation requires extraordinary skills, patience and aesthetics, which is a great test for the operator. In recent years, the extensive use of machine learning and neural networks has made it possible for computers to intelligently process images. Since 2016, various types of generative adversarial networks models have been proposed to make deep learning shine in the fields of image style transfer, image coloring, and image style change. In this case, the experiment uses the generative adversarial networks principle to process pictures and videos to realize the automatic rendering of old documentary movies.

Ay, Betül, Aydın, Galip, Koyun, Zeynep, Demir, Mehmet.  2019.  A Visual Similarity Recommendation System using Generative Adversarial Networks. 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). :44—48.

The goal of content-based recommendation system is to retrieve and rank the list of items that are closest to the query item. Today, almost every e-commerce platform has a recommendation system strategy for products that customers can decide to buy. In this paper we describe our work on creating a Generative Adversarial Network based image retrieval system for e-commerce platforms to retrieve best similar images for a given product image specifically for shoes. We compare state-of-the-art solutions and provide results for the proposed deep learning network on a standard data set.

Min, Congwen, Li, Yi, Fang, Li, Chen, Ping.  2019.  Conditional Generative Adversarial Network on Semi-supervised Learning Task. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1448—1452.

Semi-supervised learning has recently gained increasingly attention because it can combine abundant unlabeled data with carefully labeled data to train deep neural networks. However, common semi-supervised methods deeply rely on the quality of pseudo labels. In this paper, we proposed a new semi-supervised learning method based on Generative Adversarial Network (GAN), by using discriminator to learn the feature of both labeled and unlabeled data, instead of generating pseudo labels that cannot all be correct. Our approach, semi-supervised conditional GAN (SCGAN), builds upon the conditional GAN model, extending it to semi-supervised learning by changing the discriminator's output to a classification output and a real or false output. We evaluate our approach with basic semi-supervised model on MNIST dataset. It shows that our approach achieves the classification accuracy with 84.15%, outperforming the basic semi-supervised model with 72.94%, when labeled data are 1/600 of all data.

Chiba, Zouhair, Abghour, Noreddine, Moussaid, Khalid, Omri, Amina El, Rida, Mohamed.  2018.  A Hybrid Optimization Framework Based on Genetic Algorithm and Simulated Annealing Algorithm to Enhance Performance of Anomaly Network Intrusion Detection System Based on BP Neural Network. 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). :1—6.

Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.

2020-05-22
Yang, Jiacheng, Chen, Bin, Xia, Shu-Tao.  2019.  Mean-Removed Product Quantization for Approximate Nearest Neighbor Search. 2019 International Conference on Data Mining Workshops (ICDMW). :711—718.
Product quantization (PQ) and its variations are popular and attractive in approximate nearest neighbor search (ANN) due to their lower memory usage and faster retrieval speed. PQ decomposes the high-dimensional vector space into several low-dimensional subspaces, and quantizes each sub-vector in their subspaces, separately. Thus, PQ can generate a codebook containing an exponential number of codewords or indices by a Cartesian product of the sub-codebooks from different subspaces. However, when there is large variance in the average amplitude of the components of the data points, directly utilizing the PQ on the data points would result in poor performance. In this paper, we propose a new approach, namely, mean-removed product quantization (MRPQ) to address this issue. In fact, the average amplitude of a data point or the mean of a date point can be regarded as statistically independent of the variation of the vector, that is, of the way the components vary about this average. Then we can learn a separate scalar quantizer of the means of the data points and apply the PQ to their residual vectors. As shown in our comprehensive experiments on four large-scale public datasets, our approach can achieve substantial improvements in terms of Recall and MAP over some known methods. Moreover, our approach is general which can be combined with PQ and its variations.
Horzyk, Adrian, Starzyk, Janusz A..  2019.  Associative Data Model in Search for Nearest Neighbors and Similar Patterns. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :933—940.
This paper introduces a biologically inspired associative data model and structure for finding nearest neighbors and similar patterns. The method can be used as an alternative to the classical approaches to accelerate the search for such patterns using various priorities for attributes according to the Sebestyen measure. The presented structure, together with algorithms developed in this paper can be useful in various computational intelligence tasks like pattern matching, recognition, clustering, classification, multi-criterion search etc. This approach is particularly useful for the on-line operation of associative neural network graphs. Graphs that dynamically develop their structure during learning on training data. The results of experiments show that the associative approach can substantially accelerate the nearest neighbor search and that associative structures can also be used as a model for KNN tasks. Finally, this paper presents how the associative structures can be used to self-organize data and represent knowledge about them in the associative way, which yields new search approaches described in this paper.
Abdelhadi, Ameer M.S., Bouganis, Christos-Savvas, Constantinides, George A..  2019.  Accelerated Approximate Nearest Neighbors Search Through Hierarchical Product Quantization. 2019 International Conference on Field-Programmable Technology (ICFPT). :90—98.
A fundamental recurring task in many machine learning applications is the search for the Nearest Neighbor in high dimensional metric spaces. Towards answering queries in large scale problems, state-of-the-art methods employ Approximate Nearest Neighbors (ANN) search, a search that returns the nearest neighbor with high probability, as well as techniques that compress the dataset. Product-Quantization (PQ) based ANN search methods have demonstrated state-of-the-art performance in several problems, including classification, regression and information retrieval. The dataset is encoded into a Cartesian product of multiple low-dimensional codebooks, enabling faster search and higher compression. Being intrinsically parallel, PQ-based ANN search approaches are amendable for hardware acceleration. This paper proposes a novel Hierarchical PQ (HPQ) based ANN search method as well as an FPGA-tailored architecture for its implementation that outperforms current state of the art systems. HPQ gradually refines the search space, reducing the number of data compares and enabling a pipelined search. The mapping of the architecture on a Stratix 10 FPGA device demonstrates over ×250 speedups over current state-of-the-art systems, opening the space for addressing larger datasets and/or improving the query times of current systems.
2020-05-18
Zhu, Meng, Yang, Xudong.  2019.  Chinese Texts Classification System. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :149–152.
In this article, we designed an automatic Chinese text classification system aiming to implement a system for classifying news texts. We propose two improved classification algorithms as two different choices for users to choose and then our system uses the chosen method for the obtaining of the classified result of the input text. There are two improved algorithms, one is k-Bayes using hierarchy conception based on NB method in machine learning field and another one adds attention layer to the convolutional neural network in deep learning field. Through experiments, our results showed that improved classification algorithms had better accuracy than based algorithms and our system is useful for making classifying news texts more reasonably and effectively.
Zong, Zhaorong, Hong, Changchun.  2018.  On Application of Natural Language Processing in Machine Translation. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :506–510.
Natural language processing is the core of machine translation. In the history, its development process is almost the same as machine translation, and the two complement each other. This article compares the natural language processing of statistical corpora with neural machine translation and concludes the natural language processing: Neural machine translation has the advantage of deep learning, which is very suitable for dealing with the high dimension, label-free and big data of natural language, therefore, its application is more general and reflects the power of big data and big data thinking.
Zhao, Xiaohang, Zhang, Ke, Chai, Yi.  2019.  A Multivariate Time Series Classification based Multiple Fault Diagnosis Method for Hydraulic Systems. 2019 Chinese Control Conference (CCC). :6819–6824.
Hydraulic systems is a class of nonlinear complex systems. There are many typical characteristics with the systems: multiple functional components, multiple operation modes, space-time coupling work, and monitoring signals for faults are multivariate time series data, etc. Because of the characteristics, fault diagnosis for Hydraulic systems is not easy. Traditional fault diagnosis methods mostly ignore the multivariable timing characteristics of monitoring signals, it has made many detection and diagnosis (especially for multiple fault) can not keep high accuracy, and some of the methods are not even be able to multiple fault diagnosis. Aim at the problem, a multivariate time series classification based diagnosis method is proposed. Firstly, extracting timing characteristics (transformed features) from the time series data collected via sensors by 1-NN method. Secondly, training the transformed features by multi-class OVO-SVM to classify multivariate time series. Simulation of the method contains single fault and multiple faults conditions, the results show that the method has high accuracy, it can complete multiple-faults classification.
2020-05-15
Xing, Junchi, Yang, Mingliang, Zhou, Haifeng, Wu, Chunming, Ruan, Wei.  2019.  Hiding and Trapping: A Deceptive Approach for Defending against Network Reconnaissance with Software-Defined Network. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—8.

Network reconnaissance aims at gathering as much information as possible before an attack is launched. Meanwhile, static host address configuration facilitates network reconnaissance. Currently, more sophisticated network reconnaissance has been emerged with the adaptive and cooperative features. To address this, in this paper, we present Hiding and Trapping (HaT), which is a deceptive approach to disrupt adversarial network reconnaissance with the help of the software-defined networking (SDN) paradigm. HaT is able to hide valuable hosts from attackers and to trap them into decoy nodes through strategic and holistic host address mutation according to characteristic of adversaries. We implement a prototype of HaT, and evaluate its performance by experiments. The experimental results show that HaT is capable to effectively disrupt adversarial network reconnaissance with better deceptive performance than the existing address randomization approach.

2020-05-11
Cui, Zhicheng, Zhang, Muhan, Chen, Yixin.  2018.  Deep Embedding Logistic Regression. 2018 IEEE International Conference on Big Knowledge (ICBK). :176–183.
Logistic regression (LR) is used in many areas due to its simplicity and interpretability. While at the same time, those two properties limit its classification accuracy. Deep neural networks (DNNs), instead, achieve state-of-the-art performance in many domains. However, the nonlinearity and complexity of DNNs make it less interpretable. To balance interpretability and classification performance, we propose a novel nonlinear model, Deep Embedding Logistic Regression (DELR), which augments LR with a nonlinear dimension-wise feature embedding. In DELR, each feature embedding is learned through a deep and narrow neural network and LR is attached to decide feature importance. A compact and yet powerful model, DELR offers great interpretability: it can tell the importance of each input feature, yield meaningful embedding of categorical features, and extract actionable changes, making it attractive for tasks such as market analysis and clinical prediction.
Kanimozhi, V., Jacob, T. Prem.  2019.  Artificial Intelligence based Network Intrusion Detection with Hyper-Parameter Optimization Tuning on the Realistic Cyber Dataset CSE-CIC-IDS2018 using Cloud Computing. 2019 International Conference on Communication and Signal Processing (ICCSP). :0033–0036.

One of the latest emerging technologies is artificial intelligence, which makes the machine mimic human behavior. The most important component used to detect cyber attacks or malicious activities is the Intrusion Detection System (IDS). Artificial intelligence plays a vital role in detecting intrusions and widely considered as the better way in adapting and building IDS. In trendy days, artificial intelligence algorithms are rising as a brand new computing technique which will be applied to actual time issues. In modern days, neural network algorithms are emerging as a new artificial intelligence technique that can be applied to real-time problems. The proposed system is to detect a classification of botnet attack which poses a serious threat to financial sectors and banking services. The proposed system is created by applying artificial intelligence on a realistic cyber defense dataset (CSE-CIC-IDS2018), the very latest Intrusion Detection Dataset created in 2018 by Canadian Institute for Cybersecurity (CIC) on AWS (Amazon Web Services). The proposed system of Artificial Neural Networks provides an outstanding performance of Accuracy score is 99.97% and an average area under ROC (Receiver Operator Characteristic) curve is 0.999 and an average False Positive rate is a mere value of 0.001. The proposed system using artificial intelligence of botnet attack detection is powerful, more accurate and precise. The novel proposed system can be implemented in n machines to conventional network traffic analysis, cyber-physical system traffic data and also to the real-time network traffic analysis.

Peng, Wang, Kong, Xiangwei, Peng, Guojin, Li, Xiaoya, Wang, Zhongjie.  2019.  Network Intrusion Detection Based on Deep Learning. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :431–435.
With the continuous development of computer network technology, security problems in the network are emerging one after another, and it is becoming more and more difficult to ignore. For the current network administrators, how to successfully prevent malicious network hackers from invading, so that network systems and computers are at Safe and normal operation is an urgent task. This paper proposes a network intrusion detection method based on deep learning. This method uses deep confidence neural network to extract features of network monitoring data, and uses BP neural network as top level classifier to classify intrusion types. The method was validated using the KDD CUP'99 dataset from the Lincoln Laboratory of the Massachusetts Institute of Technology. The results show that the proposed method has a significant improvement over the traditional machine learning accuracy.
Mirza, Ali H., Cosan, Selin.  2018.  Computer network intrusion detection using sequential LSTM Neural Networks autoencoders. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1–4.
In this paper, we introduce a sequential autoencoder framework using long short term memory (LSTM) neural network for computer network intrusion detection. We exploit the dimensionality reduction and feature extraction property of the autoencoder framework to efficiently carry out the reconstruction process. Furthermore, we use the LSTM networks to handle the sequential nature of the computer network data. We assign a threshold value based on cross-validation in order to classify whether the incoming network data sequence is anomalous or not. Moreover, the proposed framework can work on both fixed and variable length data sequence and works efficiently for unforeseen and unpredictable network attacks. We then also use the unsupervised version of the LSTM, GRU, Bi-LSTM and Neural Networks. Through a comprehensive set of experiments, we demonstrate that our proposed sequential intrusion detection framework performs well and is dynamic, robust and scalable.
2020-05-08
Vigneswaran, Rahul K., Vinayakumar, R., Soman, K.P., Poornachandran, Prabaharan.  2018.  Evaluating Shallow and Deep Neural Networks for Network Intrusion Detection Systems in Cyber Security. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Intrusion detection system (IDS) has become an essential layer in all the latest ICT system due to an urge towards cyber safety in the day-to-day world. Reasons including uncertainty in finding the types of attacks and increased the complexity of advanced cyber attacks, IDS calls for the need of integration of Deep Neural Networks (DNNs). In this paper, DNNs have been utilized to predict the attacks on Network Intrusion Detection System (N-IDS). A DNN with 0.1 rate of learning is applied and is run for 1000 number of epochs and KDDCup-`99' dataset has been used for training and benchmarking the network. For comparison purposes, the training is done on the same dataset with several other classical machine learning algorithms and DNN of layers ranging from 1 to 5. The results were compared and concluded that a DNN of 3 layers has superior performance over all the other classical machine learning algorithms.
Niemiec, Marcin, Mehic, Miralem, Voznak, Miroslav.  2018.  Security Verification of Artificial Neural Networks Used to Error Correction in Quantum Cryptography. 2018 26th Telecommunications Forum (℡FOR). :1—4.

Error correction in quantum cryptography based on artificial neural networks is a new and promising solution. In this paper the security verification of this method is discussed and results of many simulations with different parameters are presented. The test scenarios assumed partially synchronized neural networks, typical for error rates in quantum cryptography. The results were also compared with scenarios based on the neural networks with random chosen weights to show the difficulty of passive attacks.