Visible to the public Biblio

Found 391 results

Filters: Keyword is Databases  [Clear All Filters]
2022-04-18
Yuan, Liu, Bai, Yude, Xing, Zhenchang, Chen, Sen, Li, Xiaohong, Deng, Zhidong.  2021.  Predicting Entity Relations across Different Security Databases by Using Graph Attention Network. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :834–843.
Security databases such as Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), and Common Attack Pattern Enumeration and Classification (CAPEC) maintain diverse high-quality security concepts, which are treated as security entities. Meanwhile, security entities are documented with many potential relation types that profit for security analysis and comprehension across these three popular databases. To support reasoning security entity relationships, translation-based knowledge graph representation learning treats each triple independently for the entity prediction. However, it neglects the important semantic information about the neighbor entities around the triples. To address it, we propose a text-enhanced graph attention network model (text-enhanced GAT). This model highlights the importance of the knowledge in the 2-hop neighbors surrounding a triple, under the observation of the diversity of each entity. Thus, we can capture more structural and textual information from the knowledge graph about the security databases. Extensive experiments are designed to evaluate the effectiveness of our proposed model on the prediction of security entity relationships. Moreover, the experimental results outperform the state-of-the-art by Mean Reciprocal Rank (MRR) 0.132 for detecting the missing relationships.
Shi, Pinyi, Song, Yongwook, Fei, Zongming, Griffioen, James.  2021.  Checking Network Security Policy Violations via Natural Language Questions. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–9.
Network security policies provide high-level directives regarding acceptable and unacceptable use of the network. Organizations specify these high-level directives in policy documents written using human-readable natural language. The challenge is to convert these natural language policies to the network configurations/specifications needed to enforce the policy. Network administrators, who are responsible for enforcing the policies, typically translate the policies manually, which is a challenging and error-prone process. As a result, network operators (as well as the policy authors) often want to verify that network policies are being correctly enforced. In this paper, we propose Network Policy Conversation Engine (NPCE), a system designed to help network operators (or policy writers) interact with the network using natural language (similar to the language used in the network policy statements themselves) to understand whether policies are being correctly enforced. The system leverages emerging big data collection and analysis techniques to record flow and packet level activity throughout the network that can be used to answer users policy questions. The system also takes advantage of recent advances in Natural Language Processing (NLP) to translate natural language policy questions into the corresponding network queries. To evaluate our system, we demonstrate a wide range of policy questions – inspired by actual networks policies posted on university websites – that can be asked of the system to determine if a policy violation has occurred.
2022-04-13
Govindaraj, Logeswari, Sundan, Bose, Thangasamy, Anitha.  2021.  An Intrusion Detection and Prevention System for DDoS Attacks using a 2-Player Bayesian Game Theoretic Approach. 2021 4th International Conference on Computing and Communications Technologies (ICCCT). :319—324.

Distributed Denial-of-Service (DDoS) attacks pose a huge risk to the network and threaten its stability. A game theoretic approach for intrusion detection and prevention is proposed to avoid DDoS attacks in the internet. Game theory provides a control mechanism that automates the intrusion detection and prevention process within a network. In the proposed system, system-subject interaction is modeled as a 2-player Bayesian signaling zero sum game. The game's Nash Equilibrium gives a strategy for the attacker and the system such that neither can increase their payoff by changing their strategy unilaterally. Moreover, the Intent Objective and Strategy (IOS) of the attacker and the system are modeled and quantified using the concept of incentives. In the proposed system, the prevention subsystem consists of three important components namely a game engine, database and a search engine for computing the Nash equilibrium, to store and search the database for providing the optimum defense strategy. The framework proposed is validated via simulations using ns3 network simulator and has acquired over 80% detection rate, 90% prevention rate and 6% false positive alarms.

Vieira, Alfredo Menezes, Junior, Rubens de Souza Matos, Ribeiro, Admilson de Ribamar Lima.  2021.  Systematic Mapping on Prevention of DDoS Attacks on Software Defined Networks. 2021 IEEE International Systems Conference (SysCon). :1—8.
Cyber attacks are a major concern for network administrators as the occurrences of such events are continuously increasing on the Internet. Software-defined networks (SDN) enable many management applications, but they may also become targets for attackers. Due to the separation of the data plane and the control plane, the controller appears as a new element in SDN networks, allowing centralized control of the network, becoming a strategic target in carrying out an attack. According to reports generated by security labs, the frequency of the distributed denial of service (DDoS) attacks has seen an increase in recent years, characterizing a major threat to the SDN. However, few research papers address the prevention of DDoS attacks on SDN. Therefore, this work presents a Systematic Mapping of Literature, aiming at identifying, classifying, and thus disseminating current research studies that propose techniques and methods for preventing DDoS attacks in SDN. When answering these questions, it was determined that the SDN controller was vulnerable to possible DDoS attacks. No prevention methods were found in the literature for the first phase of the attack (when attackers try to deceive users and infect the host). Therefore, the security of software-defined networks still needs improvement over DDoS attacks, despite the evident risk of an attack targeting the SDN controller.
2022-04-12
Li, Junyan.  2021.  Threats and data trading detection methods in the dark web. 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA). :1—9.
The dark web has become a major trading platform for cybercriminals, with its anonymity and encrypted content nature make it possible to exchange hacked information and sell illegal goods without being traced. The types of items traded on the dark web have increased with the number of users and demands. In recent years, in addition to the main items sold in the past, including drugs, firearms and child pornography, a growing number of cybercriminals are targeting various types of private information, including different types of account data, identity information and visual data etc. This paper will further discuss the issue of threat detection in the dark web by reviewing the past literature on the subject. An approach is also proposed to identify criminals who commit crimes offline or on the surface network by using private information purchased from the dark web and the original sources of information on the dark web by building a database based on historical victim records for keyword matching and traffic analysis.
Furumoto, Keisuke, Umizaki, Mitsuhiro, Fujita, Akira, Nagata, Takahiko, Takahashi, Takeshi, Inoue, Daisuke.  2021.  Extracting Threat Intelligence Related IoT Botnet From Latest Dark Web Data Collection. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :138—145.
As it is easy to ensure the confidentiality of users on the Dark Web, malware and exploit kits are sold on the market, and attack methods are discussed in forums. Some services provide IoT Botnet to perform distributed denial-of-service (DDoS as a Service: DaaS), and it is speculated that the purchase of these services is made on the Dark Web. By crawling such information and storing it in a database, threat intelligence can be obtained that cannot otherwise be obtained from information on the Surface Web. However, crawling sites on the Dark Web present technical challenges. For this paper, we implemented a crawler that can solve these challenges. We also collected information on markets and forums on the Dark Web by operating the implemented crawler. Results confirmed that the dataset collected by crawling contains threat intelligence that is useful for analyzing cyber attacks, particularly those related to IoT Botnet and DaaS. Moreover, by uncovering the relationship with security reports, we demonstrated that the use of data collected from the Dark Web can provide more extensive threat intelligence than using information collected only on the Surface Web.
2022-03-22
Bai, Zhihao, Wang, Ke, Zhu, Hang, Cao, Yinzhi, Jin, Xin.  2021.  Runtime Recovery of Web Applications under Zero-Day ReDoS Attacks. 2021 IEEE Symposium on Security and Privacy (SP). :1575—1588.
Regular expression denial of service (ReDoS)— which exploits the super-linear running time of matching regular expressions against carefully crafted inputs—is an emerging class of DoS attacks to web services. One challenging question for a victim web service under ReDoS attacks is how to quickly recover its normal operation after ReDoS attacks, especially these zero-day ones exploiting previously unknown vulnerabilities.In this paper, we present RegexNet, the first payload-based, automated, reactive ReDoS recovery system for web services. RegexNet adopts a learning model, which is updated constantly in a feedback loop during runtime, to classify payloads of upcoming requests including the request contents and database query responses. If detected as a cause leading to ReDoS, RegexNet migrates those requests to a sandbox and isolates their execution for a fast, first-measure recovery.We have implemented a RegexNet prototype and integrated it with HAProxy and Node.js. Evaluation results show that RegexNet is effective in recovering the performance of web services against zero-day ReDoS attacks, responsive on reacting to attacks in sub-minute, and resilient to different ReDoS attack types including adaptive ones that are designed to evade RegexNet on purpose.
2022-03-10
Sanyal, Hrithik, Shukla, Sagar, Agrawal, Rajneesh.  2021.  Natural Language Processing Technique for Generation of SQL Queries Dynamically. 2021 6th International Conference for Convergence in Technology (I2CT). :1—6.
Natural Language Processing is being used in every field of human to machine interaction. Database queries although have a confined set of instructions, but still found to be complex and dedicated human resources are required to write, test, optimize and execute structured query language statements. This makes it difficult, time-consuming and many a time inaccurate too. Such difficulties can be overcome if the queries are formed dynamically with standard procedures. In this work, parsing, lexical analysis, synonym detection and formation processes of the natural language processing are being proposed to be used for dynamically generating SQL queries and optimization of them for fast processing with high accuracy. NLP parsing of the user inputted text for retrieving, creation and insertion of data are being proposed to be created dynamically from English text inputs. This will help users of the system to generate reports from the data as per the requirement without the complexities of SQL. The proposed system will not only generate queries dynamically but will also provide high accuracy and performance.
2022-03-01
Vegni, Anna Maria, Hammouda, Marwan, Loscr\'ı, Valeria.  2021.  A VLC-Based Footprinting Localization Algorithm for Internet of Underwater Things in 6G Networks. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
In the upcoming advent of 6G networks, underwater communications are expected to play a relevant role in the context of overlapping hybrid wireless networks, following a multilayer architecture i.e., aerial-ground-underwater. The concept of Internet of Underwater Things defines different communication and networking technologies, as well as positioning and tracking services, suitable for harsh underwater scenarios. In this paper, we present a footprinting localization algorithm based on optical wireless signals in the visible range. The proposed technique is based on a hybrid Radio Frequency (RF) and Visible Light Communication (VLC) network architecture, where a central RF sensor node holds an environment channel gain map i.e., database, that is exploited for localization estimation computation. A recursive localization algorithm allows to estimate user positions with centimeter-based accuracy, in case of different turbidity scenarios.
2022-02-25
Liu, Xusheng, Deng, Zhidong, Lv, Jingxian, Zhang, Xiaohui, Xu, Yin.  2021.  Intelligent Notification System for Large User Groups. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1213—1216.
With the development of communication technology, the disadvantages of traditional notification methods such as low efficiency gradually appear. With the introduction of WAP with WTLS security and its development and maintenance, more and more notification systems are using this technology. Through the analysis, design and implementation of notification system for large user groups, this paper studies how to collect and notify data without affecting the business system, and proposes a scheme of real-time data acquisition and filtering based on trigger. The middleware and application server implementation transaction management and database operation to separate CICS middleware technology based on research using UNIXC, Socket programming, SQL statements, SYBASE database technology, from the system requirements, business process, function structure, database and data structure, the input and output of the system, system testing the aspects such as design of practical significance to intelligent notification system for large user groups. Finally, the paper describes the test effect of the system in detail. 10 users send 1, 5, 10 and 20 strokes at the same time, and the completion time is 0.28, 1.09, 1.58 and 2.20 seconds, which proves that the system has practical significance.
2022-02-24
Muhati, Eric, Rawat, Danda B..  2021.  Adversarial Machine Learning for Inferring Augmented Cyber Agility Prediction. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Security analysts conduct continuous evaluations of cyber-defense tools to keep pace with advanced and persistent threats. Cyber agility has become a critical proactive security resource that makes it possible to measure defense adjustments and reactions to rising threats. Subsequently, machine learning has been applied to support cyber agility prediction as an essential effort to anticipate future security performance. Nevertheless, apt and treacherous actors motivated by economic incentives continue to prevail in circumventing machine learning-based protection tools. Adversarial learning, widely applied to computer security, especially intrusion detection, has emerged as a new area of concern for the recently recognized critical cyber agility prediction. The rationale is, if a sophisticated malicious actor obtains the cyber agility parameters, correct prediction cannot be guaranteed. Unless with a demonstration of white-box attack failures. The challenge lies in recognizing that unconstrained adversaries hold vast potential capabilities. In practice, they could have perfect-knowledge, i.e., a full understanding of the defense tool in use. We address this challenge by proposing an adversarial machine learning approach that achieves accurate cyber agility forecast through mapped nefarious influence on static defense tools metrics. Considering an adversary would aim at influencing perilous confidence in a defense tool, we demonstrate resilient cyber agility prediction through verified attack signatures in dynamic learning windows. After that, we compare cyber agility prediction under negative influence with and without our proposed dynamic learning windows. Our numerical results show the model's execution degrades without adversarial machine learning. Such a feigned measure of performance could lead to incorrect software security patching.
2022-02-22
Ramalingam, M., Saranya, D., ShankarRam, R..  2021.  An Efficient and Effective Blockchain-based Data Aggregation for Voting System. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—4.
Blockchain is opening up new avenues for the development of new sorts of digital services. In this article, we'll employ the transparent Blockchain method to propose a system for collecting data from many sources and databases for use in local and national elections. The Blockchain-based system will be safe, trustworthy, and private. It will assist to know the overall count of the candidates who participated and it functions in the same way as people's faith in their governments does. Blockchain technology is the one that handles the actual vote. We use the secure hash algorithm for resolving this problem and tried to bring a solution through the usage of this booming technology. A centralized database in a blockchain system keeps track of the secure electronic interactions of users in a peer-to-peer network.
Sen, Adnan Ahmed Abi, Nazar, Shamim Kamal Abdul, Osman, Nazik Ahmed, Bahbouh, Nour Mahmoud, Aloufi, Hazim Faisal, Alawfi, Ibrahim Moeed M..  2021.  A New Technique for Managing Reputation of Peers in the Cooperation Approach for Privacy Protection. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :409—412.
Protecting privacy of the user location in Internet of Things (IoT) applications is a complex problem. Peer-to-peer (P2P) approach is one of the most popular techniques used to protect privacy in IoT applications, especially that use the location service. The P2P approach requires trust among peers in addition to serious cooperation. These requirements are still an open problem for this approach and its methods. In this paper, we propose an effective solution to this issue by creating a manager for the peers' reputation called R-TTP. Each peer has a new query. He has to evaluate the cooperated peer. Depending on the received result of that evaluation, the main peer will send multiple copies of the same query to multiple peers and then compare results. Moreover, we proposed another scenario to the manager of reputation by depending on Fog computing to enhance both performance and privacy. Relying on this work, a user can determine the most suitable of many available cooperating peers, while avoiding the problems of putting up with an inappropriate cooperating or uncommitted peer. The proposed method would significantly contribute to developing most of the privacy techniques in the location-based services. We implemented the main functions of the proposed method to confirm its effectiveness, applicability, and ease of application.
2022-02-10
Zheng, Yandong, Lu, Rongxing.  2020.  Efficient Privacy-Preserving Similarity Range Query based on Pre-Computed Distances in eHealthcare. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
The advance of smart eHealthcare and cloud computing techniques has propelled an increasing number of healthcare centers to outsource their healthcare data to the cloud. Meanwhile, in order to preserve the privacy of the sensitive information, healthcare centers tend to encrypt the data before outsourcing them to the cloud. Although the data encryption technique can preserve the privacy of the data, it inevitably hinders the query functionalities over the outsourced data. Among all practical query functionalities, the similarity range query is one of the most popular ones. However, to our best knowledge, many existing studies on the similarity range query over outsourced data still suffer from the efficiency issue in the query process. Therefore, in this paper, aiming at improving the query efficiency, we propose an efficient privacy-preserving similarity range query scheme based on the precomputed distance technique. In specific, we first introduce a pre-computed distance based similarity range query (PreDSQ) algorithm, which can improve the query efficiency by precomputing some distances. Then, we propose our privacy-preserving similarity query scheme by applying an asymmetric scalar-product-preserving encryption technique to preserve the privacy of the PreDSQ algorithm. Both security analysis and performance evaluation are conducted, and the results show that our proposed scheme is efficient and can well preserve the privacy of data records and query requests.
ISSN: 2576-6813
Bi, Ting, Chen, Xuehong, Li, Jun, Yang, Shuaifeng.  2020.  Research on Industrial Data Desensitization Algorithm Based on Fuzzy Set. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :1–5.
With the rapid development of internet technology, informatization and digitalization have penetrated into every link of human social life. A large amount of sensitive data has been accumulated and is still being generated within the enterprise. These sensitive data runs through the daily operation of enterprises and is widely used in business analysis, development and testing, and even some outsourcing business scenarios, which are increasing the possibility of sensitive data leakage and tampering. In fact, due to the improper use of data and the lack of protective measures and other reasons, data leakage events have happened again and again. Therefore, by introducing the concept of fuzzy set and using the membership function method, this paper proposes a desensitization technology framework for industrial data and a data desensitization algorithm based on fuzzy set, and verifies the desensitization effect and protective action on sensitive data of this algorithm through the test data desensitization experiment.
Badran, Sultan, Arman, Nabil, Farajallah, Mousa.  2020.  Towards a Hybrid Data Partitioning Technique for Secure Data Outsourcing. 2020 21st International Arab Conference on Information Technology (ACIT). :1–9.
In light of the progress achieved by the technology sector in the areas of internet speed and cloud services development, and in addition to other advantages provided by the cloud such as reliability and easy access from anywhere and anytime, most data owners find an opportunity to take advantage of the cloud to store data. However, data owners find a challenge that was and is still facing them in the field of outsourcing, which is protecting sensitive data from leakage. Researchers found that partitioning data into partitions, based on data sensitivity, can be used to protect data from leakage and to increase performance by storing the partition, which contains sensitive data in an encrypted form. In this paper, we review the methods used in designing partitions and dividing data approaches. A hybrid data partitioning approach is proposed to improve these techniques. We consider the frequency attack types used to guess the sensitive data and the most important properties that must be available in order for the encryption to be strong against frequency attacks.
2022-02-04
Sharif, Amer, Ginting, Dewi S., Dias, Arya D..  2021.  Securing the Integrity of PDF Files using RSA Digital Signature and SHA-3 Hash Function. 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). :154–159.
Signatures are used on documents as written proof that the document was verified by the person indicated. Signature also indicated that the document originated from the signer if the document is transferred to another party. A document maybe in physical print form but may also be a digital print. A digital print requires additional security since a digital document may easily be altered by anyone although the said document is signed using a photographed or scanned signature. One of the means of security is by using the RSA Digital Signature method which is a combination of the RSA algorithm with Digital Signature. RSA algorithm is one of the public key cryptography algorithms, while Digital Signature is a security scheme which may guarantee the authenticity, non-repudiation, and integrity of a file by means of a hash function. This research implemented a web-based combination of RSA Digital Signature with SHA-3 hash function to secure the integrity of PDF files using PHP programming language. The result is a web-based system which could guarantee the authenticity, non repudiation and integrity of PDF files. Testing were carried out on six different sizes of PDF files ranging from 6 KB, up to 23285 KB on three different web browsers: Google Chrome, Microsoft Edge, and Mozilla Firefox. Average processing times of signing and verifying on each browsers were 1.3309 seconds, 1.2565 seconds, and 1.2667 seconds.
2022-01-31
Wang, Zhihui, Sun, Peng, Luo, Nana, Guo, Benzhen.  2021.  A Three-Party Mutual Authentication Protocol for Wearable IOT Health Monitoring System. 2021 IEEE International Conference on Smart Internet of Things (SmartIoT). :344—347.
Recently, the frequent security incidents of the Internet of things make the wearable IOT health monitoring systems (WIHMS) face serious security threats. Aiming at the security requirements of WIHMS identity authentication, Q. Jiang proposed a lightweight device mutual identity authentication solution in 2019. The scheme has good security performance. However, we find that in Jiang’s scheme, in the authentication phase, the server CS needs at least 3 queries and 1 update of the database operation, which affects the overall performance of the system. For this reason, we propose a new device mutual authentication and key agreement protocol. In our protocol, the authentication server only needs to query the server database twice.
2022-01-10
Maabane, Jubilant Swelihle, Heymann, Reolyn.  2021.  An Information Theoretic Approach to Assist in Identifying Counterfeit Consumer Goods. 2021 IEEE AFRICON. :1–6.
In an increasingly connected world where products are just a click away, there is a growing need for systems that seek to equip consumers with the necessary tools to identify misrepresented products. Sub-standard ingredients used in the production of sanitary towels can pose a serious health risk to the consumer. Informal retailers or Spaza-shops have been accused of selling counterfeit food products to unsuspecting consumers. In this paper, we propose a system that can be used by consumers to scan a quick response (QR) code printed on the product. Built into an android application, is a system that applies the RSA public key encryption algorithm to secure the data prior to encoding into the QR code. The proposed system is also responsible for updating location data of previous scans on a dedicated cloud database. Upon completion of a field test, having collected months of consumer data, counterfeit prediction can be improved. In addition, a timely warning can be sent to a customer and relevant authorities if a unique product batch number is scanned outside of an expected area.
2021-12-22
Malhotra, Diksha, Srivastava, Shubham, Saini, Poonam, Singh, Awadhesh Kumar.  2021.  Blockchain Based Audit Trailing of XAI Decisions: Storing on IPFS and Ethereum Blockchain. 2021 International Conference on COMmunication Systems NETworkS (COMSNETS). :1–5.
Explainable Artificial Intelligence (XAI) generates explanations which are used by regulators to audit the responsibility in case of any catastrophic failure. These explanations are currently stored in centralized systems. However, due to lack of security and traceability in centralized systems, the respective owner may temper the explanations for his convenience in order to avoid any penalty. Nowadays, Blockchain has emerged as one of the promising technologies that might overcome the security limitations. Hence, in this paper, we propose a novel Blockchain based framework for proof-of-authenticity pertaining to XAI decisions. The framework stores the explanations in InterPlanetary File System (IPFS) due to storage limitations of Ethereum Blockchain. Further, a Smart Contract is designed and deployed in order to supervise the storage and retrieval of explanations from Ethereum Blockchain. Furthermore, to induce cryptographic security in the network, an explanation's hash is calculated and stored in Blockchain too. Lastly, we perform the cost and security analysis of our proposed system.
2021-12-21
He, Zhangying, Miari, Tahereh, Makrani, Hosein Mohammadi, Aliasgari, Mehrdad, Homayoun, Houman, Sayadi, Hossein.  2021.  When Machine Learning Meets Hardware Cybersecurity: Delving into Accurate Zero-Day Malware Detection. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :85–90.
Cybersecurity for the past decades has been in the front line of global attention as a critical threat to the information technology infrastructures. According to recent security reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers as well as harmful purposes to compromise security of computing systems. To address the high complexity and computational overheads of conventional software-based detection techniques, Hardware-Supported Malware Detection (HMD) has proved to be efficient for detecting malware at the processors' microarchitecture level with the aid of Machine Learning (ML) techniques applied on Hardware Performance Counter (HPC) data. Existing ML-based HMDs while accurate in recognizing known signatures of malicious patterns, have not explored detecting unknown (zero-day) malware data at run-time which is a more challenging problem, since its HPC data does not match any known attack applications' signatures in the existing database. In this work, we first present a review of recent ML-based HMDs utilizing built-in HPC registers information. Next, we examine the suitability of various standard ML classifiers for zero-day malware detection and demonstrate that such methods are not capable of detecting unknown malware signatures with high detection rate. Lastly, to address the challenge of run-time zero-day malware detection, we propose an ensemble learning-based technique to enhance the performance of the standard malware detectors despite using a small number of microarchitectural features that are captured at run-time by existing HPCs. The experimental results demonstrate that our proposed approach by applying AdaBoost ensemble learning on Random Forrest classifier as a regular classifier achieves 92% F-measure and 95% TPR with only 2% false positive rate in detecting zero-day malware using only the top 4 microarchitectural features.
2021-12-20
D'Agostino, Jack, Kul, Gokhan.  2021.  Toward Pinpointing Data Leakage from Advanced Persistent Threats. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :157–162.
Advanced Persistent Threats (APT) consist of most skillful hackers who employ sophisticated techniques to stealthily gain unauthorized access to private networks and exfiltrate sensitive data. When their existence is discovered, organizations - if they can sustain business continuity - mostly have to perform forensics activities to assess the damage of the attack and discover the extent of sensitive data leakage. In this paper, we construct a novel framework to pinpoint sensitive data that may have been leaked in such an attack. Our framework consists of creating baseline fingerprints for each workstation for setting normal activity, and we consider the change in the behavior of the network overall. We compare the accused fingerprint with sensitive database information by utilizing both Levenstein distance and TF-IDF/cosine similarity resulting in a similarity percentage. This allows us to pinpoint what part of data was exfiltrated by the perpetrators, where in the network the data originated, and if that data is sensitive to the private company's network. We then perform feasibility experiments to show that even these simple methods are feasible to run on a network representative of a mid-size business.
Baby, Ann, Shilpa, Philomine.  2021.  An Integrated Web-Based Approach for Security Enhancement by Identification and Prevention of Scam Websites. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :38–43.
Scam websites or illegitimate internet portals are widely used to mislead users into fraud or malicious attacks, which may involve compromise of vital information. Scammers misuse the secrecy and anonymity of the internet of facade their true identity and purposes behind numerous disguises. These can include false security alerts, information betrayal, and other misleading presentations to give the impression of legality and lawfulness. The proposed research is a web-based application - Scam Website Analyser- which enables checking whether a website is a scammed one.. The main aim of the research is to improve security and prevent scams of public websites. It ensures maintaining the details of scam websites in a database and also requests the websites of other databases using external APIs. The basic idea behind the research is the concept of user -orienteers where the user is able to get information about scam websites and prevent themselves from using those sites in future.
2021-10-12
Uy, Francis Aldrine A., Vea, Larry A., Binag, Matthew G., Diaz, Keith Anshilo L., Gallardo, Roy G., Navarro, Kevin Jorge A., Pulido, Maria Teresa R., Pinca, Ryan Christopher B., Rejuso, Billy John Rudolfh I., Santos, Carissa Jane R..  2020.  The Potential of New Data Sources in a Data-Driven Transportation, Operation, Management and Assessment System (TOMAS). 2020 IEEE Conference on Technologies for Sustainability (SusTech). :1–8.
We present our journey in constructing the first integrated data warehouse for Philippine transportation research in the hopes of developing a Transportation Decision Support System for impact studies and policy making. We share how we collected data from diverse sources, processed them into a homogeneous format and applied them to our multimodal platform. We also list the challenges we encountered, including bureaucratic delays, data privacy concerns, lack of software, and overlapping datasets. The data warehouse shall serve as a public resource for researchers and professionals, and for government officials to make better-informed policies. The warehouse will also function within our multi-modal platform for measurement, modelling, and visualization of road transportation. This work is our contribution to improve the transportation situation in the Philippines, both in the local and national levels, to boost our economy and overall quality of life.
Naveed, Sarah, Sultan, Aiman, Mansoor, Khwaja.  2020.  An Enhanced SIP Authentication Protocol for Preserving User Privacy. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
Owing to the advancements in communication media and devices all over the globe, there has arisen a dire need for to limit the alarming number of attacks targeting these and to enhance their security. Multiple techniques have been incorporated in different researches and various protocols and schemes have been put forward to cater security issues of session initiation protocol (SIP). In 2008, Qiu et al. presented a proposal for SIP authentication which while effective than many existing schemes, was still found vulnerable to many security attacks. To overcome those issues, Zhang et al. proposed an authentication protocol. This paper presents the analysis of Zhang et al. authentication scheme and concludes that their proposed scheme is susceptible to user traceablity. It also presents an improved SIP authentication scheme that eliminates the possibility of traceability of user's activities. The proposed scheme is also verified by contemporary verification tool, ProVerif and it is found to be more secure, efficient and practical than many similar SIP authetication scheme.