Visible to the public Biblio

Found 391 results

Filters: Keyword is Databases  [Clear All Filters]
2022-08-12
Ji, Yi, Ohsawa, Yukio.  2021.  Mining Frequent and Rare Itemsets With Weighted Supports Using Additive Neural Itemset Embedding. 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
Over the past two decades, itemset mining techniques have become an integral part of pattern mining in large databases. We present a novel system for mining frequent and rare itemsets simultaneously with supports weighted by cardinality in transactional datasets. Based on our neural item embedding with additive compositionality, the original mining problems are approximately reduced to polynomial-time convex optimization, namely a series of vector subset selection problems in Euclidean space. The numbers of transactions and items are no longer exponential factors of the time complexity under such reduction, except only the Euclidean space dimension, which can be assigned arbitrarily for a trade-off between mining speed and result quality. The efficacy of our method reveals that additive compositionality can be represented by linear translation in the itemset vector space, which resembles the linguistic regularities in word embedding by similar neural modeling. Experiments show that our learned embedding can bring pattern itemsets with higher accuracy than sampling-based lossy mining techniques in most cases, and the scalability of our mining approach triumphs over several state-of-the-art distributed mining algorithms.
Camenisch, Jan, Dubovitskaya, Maria, Rial, Alfredo.  2021.  Concise UC Zero-Knowledge Proofs for Oblivious Updatable Databases. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
We propose an ideal functionality FCD and a construction ΠCD for oblivious and updatable committed databases. FCD allows a prover P to read, write, and update values in a database and to prove to a verifier V in zero-knowledge (ZK) that a value is read from or written into a certain position. The following properties must hold: (1) values stored in the database remain hidden from V; (2) a value read from a certain position is equal to the value previously written into that position; (3) (obliviousness) both the value read or written and its position remain hidden from V.ΠCD is based on vector commitments. After the initialization phase, the cost of read and write operations is independent of the database size, outperforming other techniques that achieve cost sublinear in the dataset size for prover and/or verifier. Therefore, our construction is especially appealing for large datasets. In existing “commit-and-prove” two-party protocols, the task of maintaining a committed database between P and V and reading and writing values into it is not separated from the task of proving statements about the values read or written. FCD allows us to improve modularity in protocol design by separating those tasks. In comparison to simply using a commitment scheme to maintain a committed database, FCD allows P to hide efficiently the positions read or written from V. Thanks to this property, we design protocols for e.g. privacy-preserving e-commerce and location-based services where V gathers aggregate statistics about the statements that P proves in ZK.
Telghamti, Samira, Derdouri, Lakhdhar.  2021.  Towards a Trust-based Model for Access Control for Graph-Oriented Databases. 2021 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS). :1—3.
Privacy and data security are critical aspects in databases, mainly when the latter are publically accessed such in social networks. Furthermore, for advanced databases, such as NoSQL ones, security models and security meta-data must be integrated to the business specification and data. In the literature, the proposed models for NoSQL databases can be considered as static, in the sense where the privileges for a given user are predefined and remain unchanged during job sessions. In this paper, we propose a novel model for NoSQL database access control that we aim that it will be dynamic. To be able to design such model, we have considered the Trust concept to compute the reputation degree for a given user that plays a given role.
2022-07-29
Li, Xianxian, Fu, Xuemei, Yu, Feng, Shi, Zhenkui, Li, Jie, Yang, Junhao.  2021.  A Private Statistic Query Scheme for Encrypted Electronic Medical Record System. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :1033—1039.
In this paper, we propose a scheme that supports statistic query and authorized access control on an Encrypted Electronic Medical Records Databases(EMDB). Different from other schemes, it is based on Differential-Privacy(DP), which can protect the privacy of patients. By deploying an improved Multi-Authority Attribute-Based Encryption(MA-ABE) scheme, all authorities can distribute their search capability to clients under different authorities without additional negotiations. To our best knowledge, there are few studies on statistical queries on encrypted data. In this work, we consider that support differentially-private statistical queries. To improve search efficiency, we leverage the Bloom Filter(BF) to judge whether the keywords queried by users exists. Finally, we use experiments to verify and evaluate the feasibility of our proposed scheme.
Ménétrey, Jämes, Pasin, Marcelo, Felber, Pascal, Schiavoni, Valerio.  2021.  Twine: An Embedded Trusted Runtime for WebAssembly. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :205—216.
WebAssembly is an Increasingly popular lightweight binary instruction format, which can be efficiently embedded and sandboxed. Languages like C, C++, Rust, Go, and many others can be compiled into WebAssembly. This paper describes Twine, a WebAssembly trusted runtime designed to execute unmodified, language-independent applications. We leverage Intel SGX to build the runtime environment without dealing with language-specific, complex APIs. While SGX hardware provides secure execution within the processor, Twine provides a secure, sandboxed software runtime nested within an SGX enclave, featuring a WebAssembly system interface (WASI) for compatibility with unmodified WebAssembly applications. We evaluate Twine with a large set of general-purpose benchmarks and real-world applications. In particular, we used Twine to implement a secure, trusted version of SQLite, a well-known full-fledged embeddable database. We believe that such a trusted database would be a reasonable component to build many larger application services. Our evaluation shows that SQLite can be fully executed inside an SGX enclave via WebAssembly and existing system interface, with similar average performance overheads. We estimate that the performance penalties measured are largely compensated by the additional security guarantees and its full compatibility with standard WebAssembly. An indepth analysis of our results indicates that performance can be greatly improved by modifying some of the underlying libraries. We describe and implement one such modification in the paper, showing up to 4.1 × speedup. Twine is open-source, available at GitHub along with instructions to reproduce our experiments.
Badran, Sultan, Arman, Nabil, Farajallah, Mousa.  2021.  An Efficient Approach for Secure Data Outsourcing using Hybrid Data Partitioning. 2021 International Conference on Information Technology (ICIT). :418—423.
This paper presents an implementation of a novel approach, utilizing hybrid data partitioning, to secure sensitive data and improve query performance. In this novel approach, vertical and horizontal data partitioning are combined together in an approach that called hybrid partitioning and the new approach is implemented using Microsoft SQL server to generate divided/partitioned relations. A group of proposed rules is applied to the query request process using query binning (QB) and Metadata of partitioning. The proposed approach is validated using experiments involving a collection of data evaluated by outcomes of advanced stored procedures. The suggested approach results are satisfactory in achieving the properties of defining the data security: non-linkability and indistinguishability. The results of the proposed approach were satisfactory. The proposed novel approach outperforms a well-known approach called PANDA.
Shen, Ning, Yeh, Jyh-Haw, Sun, Hung-Min, Chen, Chien-Ming.  2021.  A Practical and Secure Stateless Order Preserving Encryption for Outsourced Databases. 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC). :133—142.
Order-preserving encryption (OPE) plays an important role in securing outsourced databases. OPE schemes can be either Stateless or Stateful. Stateful schemes can achieve the ideal security of order-preserving encryption, i.e., “reveal no information about the plaintexts besides order.” However, comparing to stateless schemes, stateful schemes require maintaining some state information locally besides encryption keys and the ciphertexts are mutable. On the other hand, stateless schemes only require remembering encryption keys and thus is more efficient. It is a common belief that stateless schemes cannot provide the same level of security as stateful ones because stateless schemes reveal the relative distance among their corresponding plaintext. In real world applications, such security defects may lead to the leakage of statistical and sensitive information, e.g., the data distribution, or even negates the whole encryption. In this paper, we propose a practical and secure stateless order-preserving encryption scheme. With prior knowledge of the data to be encrypted, our scheme can achieve IND-CCPA (INDistinguishability under Committed ordered Chosen Plaintext Attacks) security for static data set. Though the IND-CCPA security can't be met for dynamic data set, our new scheme can still significantly improve the security in real world applications. Along with the encryption scheme, in this paper we also provide methods to eliminate access pattern leakage in communications and thus prevents some common attacks to OPE schemes in practice.
Fuhry, Benny, Jayanth Jain, H A, Kerschbaum, Florian.  2021.  EncDBDB: Searchable Encrypted, Fast, Compressed, In-Memory Database Using Enclaves. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :438—450.
Data confidentiality is an important requirement for clients when outsourcing databases to the cloud. Trusted execution environments, such as Intel SGX, offer an efficient solution to this confidentiality problem. However, existing TEE-based solutions are not optimized for column-oriented, in-memory databases and pose impractical memory requirements on the enclave. We present EncDBDB, a novel approach for client-controlled encryption of a column-oriented, in-memory databases allowing range searches using an enclave. EncDBDB offers nine encrypted dictionaries, which provide different security, performance, and storage efficiency tradeoffs for the data. It is especially suited for complex, read-oriented, analytic queries as present, e.g., in data warehouses. The computational overhead compared to plaintext processing is within a millisecond even for databases with millions of entries and the leakage is limited. Compressed encrypted data requires less space than a corresponding plaintext column. Furthermore, EncDBDB's enclave is very small reducing the potential for security-relevant implementation errors and side-channel leakages.
Mao, Lina, Tang, Linyan.  2021.  The Design of the Hybrid Intrusion Detection System ABHIDS. 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). :354–358.
Information system security is very important and very complicated, security is to prevent potential crisis. To detect both from external invasion behavior, also want to check the internal unauthorized behavior. Presented here ABHIDS hybrid intrusion detection system model, designed a component Agent, controller, storage, filter, manager component (database), puts forward a new detecting DDoS attacks (trinoo) algorithm and the implementation. ABHIDS adopts object-oriented design method, a study on intrusion detection can be used as a working mechanism of the algorithms and test verification platform.
2022-07-15
Bašić, B., Udovičić, P., Orel, O..  2021.  In-database Auditing Subsystem for Security Enhancement. 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO). :1642—1647.
Many information systems have been around for several decades, and most of them have their underlying databases. The data accumulated in those databases over the years could be a very valuable asset, which must be protected. The first role of database auditing is to ensure and confirm that security measures are set correctly. However, tracing user behavior and collecting a rich audit trail enables us to use that trail in a more proactive ways. As an example, audit trail could be analyzed ad hoc and used to prevent intrusion, or analyzed afterwards, to detect user behavior patterns, forecast workloads, etc. In this paper, we present a simple, secure, configurable, role-separated, and effective in-database auditing subsystem, which can be used as a base for access control, intrusion detection, fraud detection and other security-related analyses and procedures. It consists of a management relations, code and data object generators and several administrative tools. This auditing subsystem, implemented in several information systems, is capable of keeping the entire audit trail (data history) of a database, as well as all the executed SQL statements, which enables different security applications, from ad hoc intrusion prevention to complex a posteriori security analyses.
Sánchez, Ricardo Andrés González, Bernal, Davor Julián Moreno, Parada, Hector Dario Jaimes.  2021.  Security assessment of Nosql Mongodb, Redis and Cassandra database managers. 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1—7.
The advancement of technology in the creation of new tools to solve problems such as information storage generates proportionally developing methods that search for security flaws or breaches that compromise said information. The need to periodically generate security reports on database managers is given by the complexity and number of attacks that can be carried out today. This project seeks to carry out an evaluation of the security of NoSQL database managers. The work methodology is developed according to the order of the objectives, it begins by synthesizing the types of vulnerabilities, attacks and protection schemes limited to MongoDB, Redis and Apache Cassandra. Once established, a prototype of a web system that stores information with a non-relational database will be designed on which a series of attacks defined by a test plan will be applied seeking to add, consult, modify or eliminate information. Finally, a report will be presented that sets out the attacks carried out, the way in which they were applied, the results, possible countermeasures, security advantages and disadvantages for each manager and the conclusions obtained. Thus, it is possible to select which tool is more convenient to use for a person or organization in a particular case. The results showed that MongoDB is more vulnerable to NoSQL injection attacks, Redis is more vulnerable to attacks registered in the CVE and that Cassandra is more complex to use but is less vulnerable.
Pengwei, Ma, Kai, Wei, Chunyu, Jiang, Junyi, Li, Jiafeng, Tian, Siyuan, Liu, Minjing, Zhong.  2021.  Research on Evaluation System of Relational Cloud Database. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1369—1373.
With the continuous emergence of cloud computing technology, cloud infrastructure software will become the mainstream application model in the future. Among the databases, relational databases occupy the largest market share. Therefore, the relational cloud database will be the main product of the combination of database technology and cloud computing technology, and will become an important branch of the database industry. This article explores the establishment of an evaluation system framework for relational databases, helping enterprises to select relational cloud database products according to a clear goal and path. This article can help enterprises complete the landing of relational cloud database projects.
Lagraa, Sofiane, State, Radu.  2021.  What database do you choose for heterogeneous security log events analysis? 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :812—817.
The heterogeneous massive logs incoming from multiple sources pose major challenges to professionals responsible for IT security and system administrator. One of the challenges is to develop a scalable heterogeneous logs database for storage and further analysis. In fact, it is difficult to decide which database is suitable for the needs, the best of a use case, execution time and storage performances. In this paper, we explore, study, and compare the performance of SQL and NoSQL databases on large heterogeneous event logs. We implement the relational database using MySQL, the column-oriented database using Impala on the top of Hadoop, and the graph database using Neo4j. We experiment the databases on a large heterogeneous logs and provide advice, the pros and cons of each SQL and NoSQL database. Our findings that Impala outperforms MySQL and Neo4j databases in terms of loading logs, execution time of simple queries, and storage of logs. However, Neo4j outperforms Impala and MySQL in the execution time of complex queries.
Rezaimehr, Fatemeh, Dadkhah, Chitra.  2021.  Injection Shilling Attack Tool for Recommender Systems. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1—4.
Recommender systems help people in finding a particular item based on their preference from a wide range of products in online shopping rapidly. One of the most popular models of recommendation systems is the Collaborative Filtering Recommendation System (CFRS) that recommend the top-K items to active user based on peer grouping user ratings. The implementation of CFRS is easy and it can easily be attacked by fake users and affect the recommendation. Fake users create a fake profile to attack the RS and change the output of it. Different attack types with different features and attacking methods exist in which decrease the accuracy. It is important to detect fake users, remove their rating from rating matrix and recognize the items has been attacked. In the recent years, many algorithms have been proposed to detect the attackers but first, researchers have to inject the attack type into their dataset and then evaluate their proposed approach. The purpose of this article is to develop a tool to inject the different attack types to datasets. Proposed tool constructs a new dataset containing the fake users therefore researchers can use it for evaluating their proposed attack detection methods. Researchers could choose the attack type and the size of attack with a user interface of our proposed tool easily.
2022-07-05
Liu, Weida, Fang, Jian.  2021.  Facial Expression Recognition Method Based on Cascade Convolution Neural Network. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1012—1015.
In view of the problem that the convolution neural network research of facial expression recognition ignores the internal relevance of the key links, which leads to the low accuracy and speed of facial expression recognition, and can't meet the recognition requirements, a series cascade algorithm model for expression recognition of educational robot is constructed and enables the educational robot to recognize multiple students' facial expressions simultaneously, quickly and accurately in the process of movement, in the balance of the accuracy, rapidity and stability of the algorithm, based on the cascade convolution neural network model. Through the CK+ and Oulu-CASIA expression recognition database, the expression recognition experiments of this algorithm are compared with the commonly used STM-ExpLet and FN2EN cascade network algorithms. The results show that the accuracy of the expression recognition method is more than 90%. Compared with the other two commonly used cascade convolution neural network methods, the accuracy of expression recognition is significantly improved.
Fallah, Zahra, Ebrahimpour-Komleh, Hossein, Mousavirad, Seyed Jalaleddin.  2021.  A Novel Hybrid Pyramid Texture-Based Facial Expression Recognition. 2021 5th International Conference on Pattern Recognition and Image Analysis (IPRIA). :1—6.
Automated analysis of facial expressions is one of the most interesting and challenging problems in many areas such as human-computer interaction. Facial images are affected by many factors, such as intensity, pose and facial expressions. These factors make facial expression recognition problem a challenge. The aim of this paper is to propose a new method based on the pyramid local binary pattern (PLBP) and the pyramid local phase quantization (PLPQ), which are the extension of the local binary pattern (LBP) and the local phase quantization (LPQ) as two methods for extracting texture features. LBP operator is used to extract LBP feature in the spatial domain and LPQ operator is used to extract LPQ feature in the frequency domain. The combination of features in spatial and frequency domains can provide important information in both domains. In this paper, PLBP and PLPQ operators are separately used to extract features. Then, these features are combined to create a new feature vector. The advantage of pyramid transform domain is that it can recognize facial expressions efficiently and with high accuracy even for very low-resolution facial images. The proposed method is verified on the CK+ facial expression database. The proposed method achieves the recognition rate of 99.85% on CK+ database.
2022-06-14
Hataba, Muhammad, Sherif, Ahmed, Elsersy, Mohamed, Nabil, Mahmoud, Mahmoud, Mohamed, Almotairi, Khaled H..  2021.  Privacy-Preserving Biometric-based Authentication Scheme for Electric Vehicles Charging System. 2021 3rd IEEE Middle East and North Africa COMMunications Conference (MENACOMM). :86–91.
Nowadays, with the continuous increase in oil prices and the worldwide shift towards clean energy, all-electric vehicles are booming. Thence, these vehicles need widespread charging systems operating securely and reliably. Consequently, these charging systems need the most robust cybersecurity measures and strong authentication mechanisms to protect its user. This paper presents a new security scheme leveraging human biometrics in terms of iris recognition to defend against multiple types of cyber-attacks such as fraudulent identities, man-in-the-middle attacks, or unauthorized access to electric vehicle charging stations. Fundamentally, the proposed scheme implements a security mechanism based on the inherently unique characteristics of human eye biometric. The objective of the proposed scheme is to enhance the security of electric vehicle charging stations by using a low-cost and efficient authentication using k-Nearest Neighbours (KNN), which is a lightweight encryption algorithm.We tested our system on high-quality images obtained from the standard IITD iris database to search over the encrypted database and authenticate a legitimate user. The results showed that our proposed technique had minimal communication and computation overhead, which is quite suitable for the resource-limited charging station devices. Furthermore, we proved that our scheme outperforms other existing techniques.
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Kirchgasser, Simon, Méndez-Vázquez, Heydi, Uhl, Andreas.  2021.  Highly Efficient Protection of Biometric Face Samples with Selective JPEG2000 Encryption. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2580–2584.
When biometric databases grow larger, a security breach or leak can affect millions. In order to protect against such a threat, the use of encryption is a natural choice. However, a biometric identification attempt then requires the decryption of a potential huge database, making a traditional approach potentially unfeasible. The use of selective JPEG2000 encryption can reduce the encryption’s computational load and enable a secure storage of biometric sample data. In this paper we will show that selective encryption of face biometric samples is secure. We analyze various encoding settings of JPEG2000, selective encryption parameters on the "Labeled Faces in the Wild" database and apply several traditional and deep learning based face recognition methods.
2022-06-06
Hung, Benjamin W.K., Muramudalige, Shashika R., Jayasumana, Anura P., Klausen, Jytte, Libretti, Rosanne, Moloney, Evan, Renugopalakrishnan, Priyanka.  2019.  Recognizing Radicalization Indicators in Text Documents Using Human-in-the-Loop Information Extraction and NLP Techniques. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
Among the operational shortfalls that hinder law enforcement from achieving greater success in preventing terrorist attacks is the difficulty in dynamically assessing individualized violent extremism risk at scale given the enormous amount of primarily text-based records in disparate databases. In this work, we undertake the critical task of employing natural language processing (NLP) techniques and supervised machine learning models to classify textual data in analyst and investigator notes and reports for radicalization behavioral indicators. This effort to generate structured knowledge will build towards an operational capability to assist analysts in rapidly mining law enforcement and intelligence databases for cues and risk indicators. In the near-term, this effort also enables more rapid coding of biographical radicalization profiles to augment a research database of violent extremists and their exhibited behavioral indicators.
Silvarajoo, Vimal Raj, Yun Lim, Shu, Daud, Paridah.  2021.  Digital Evidence Case Management Tool for Collaborative Digital Forensics Investigation. 2021 3rd International Cyber Resilience Conference (CRC). :1–4.
Digital forensics investigation process begins with the acquisition, investigation until the presentation of investigation findings. Investigators are required to manage bits and pieces of digital evidence in the cloud and to correlate with evidence found in physical machines and network. The process could be made easy with a proper case management tool that is hosted in the web. The challenge of maintaining chain of custody, determining access to evidence, assignment of forensics investigator could be overcome when digital evidence is fully integrated in a single platform. Our proposed case management tool streamlines information gathering and integrates information on different platforms, shares information, tracks cases, and uploads data directly into a database. In addition, the case management tool facilitates the collaboration of investigators through sharing of forensics findings. These features allow case owner or administrator to track and monitor investigation progress in a forensically sound manner.
2022-05-10
Pereira, José D'Abruzzo, Antunes, João Henggeler, Vieira, Marco.  2021.  On Building a Vulnerability Dataset with Static Information from the Source Code. 2021 10th Latin-American Symposium on Dependable Computing (LADC). :1–2.

Software vulnerabilities are weaknesses in software systems that can have serious consequences when exploited. Examples of side effects include unauthorized authentication, data breaches, and financial losses. Due to the nature of the software industry, companies are increasingly pressured to deploy software as quickly as possible, leading to a large number of undetected software vulnerabilities. Static code analysis, with the support of Static Analysis Tools (SATs), can generate security alerts that highlight potential vulnerabilities in an application's source code. Software Metrics (SMs) have also been used to predict software vulnerabilities, usually with the support of Machine Learning (ML) classification algorithms. Several datasets are available to support the development of improved software vulnerability detection techniques. However, they suffer from the same issues: they are either outdated or use a single type of information. In this paper, we present a methodology for collecting software vulnerabilities from known vulnerability databases and enhancing them with static information (namely SAT alerts and SMs). The proposed methodology aims to define a mechanism capable of more easily updating the collected data.

2022-05-03
Zeighami, Sepanta, Ghinita, Gabriel, Shahabi, Cyrus.  2021.  Secure Dynamic Skyline Queries Using Result Materialization. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :157—168.

Skyline computation is an increasingly popular query, with broad applicability to many domains. Given the trend to outsource databases, and due to the sensitive nature of the data (e.g., in healthcare), it is essential to evaluate skylines on encrypted datasets. Research efforts acknowledged the importance of secure skyline computation, but existing solutions suffer from several shortcomings: (i) they only provide ad-hoc security; (ii) they are prohibitively expensive; or (iii) they rely on assumptions such as the presence of multiple non-colluding parties in the protocol. Inspired by solutions for secure nearest-neighbors, we conjecture that a secure and efficient way to compute skylines is through result materialization. However, materialization is much more challenging for skylines queries due to large space requirements. We show that pre-computing skyline results while minimizing storage overhead is NP-hard, and we provide heuristics that solve the problem more efficiently, while maintaining storage at reasonable levels. Our algorithms are novel and also applicable to regular skyline computation, but we focus on the encrypted setting where materialization reduces the response time of skyline queries from hours to seconds. Extensive experiments show that we clearly outperform existing work in terms of performance, and our security analysis proves that we obtain a small (and quantifiable) data leakage.

2022-04-20
Giraldo, Jairo, Cardenas, Alvaro, Kantarcioglu, Murat.  2017.  Security and Privacy Trade-Offs in CPS by Leveraging Inherent Differential Privacy. 2017 IEEE Conference on Control Technology and Applications (CCTA). :1313–1318.
Cyber-physical systems are subject to natural uncertainties and sensor noise that can be amplified/attenuated due to feedback. In this work, we want to leverage these properties in order to define the inherent differential privacy of feedback-control systems without the addition of an external differential privacy noise. If larger levels of privacy are required, we introduce a methodology to add an external differential privacy mechanism that injects the minimum amount of noise that is needed. On the other hand, we show how the combination of inherent and external noise affects system security in terms of the impact that integrity attacks can impose over the system while remaining undetected. We formulate a bilevel optimization problem to redesign the control parameters in order to minimize the attack impact for a desired level of inherent privacy.
2022-04-19
Cordoș, Claudia, Mihail\u a, Laura, Faragó, Paul, Hintea, Sorin.  2021.  ECG Signal Classification Using Convolutional Neural Networks for Biometric Identification. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :167–170.
The latest security methods are based on biometric features. The electrocardiogram is increasingly used in such systems because it provides biometric features that are difficult to falsify. This paper aims to study the use of the electrocardiogram together with the Convolutional Neural Networks, in order to identify the subjects based on the ECG signal and to improve the security. In this study, we used the Fantasia database, available on the PhysioNet platform, which contains 40 ECG recordings. The ECG signal is pre-processed, and then spectrograms are generated for each ECG signal. Spectrograms are applied to the input of several architectures of Convolutional Neural Networks like Inception-v3, Xception, MobileNet and NasNetLarge. An analysis of performance metrics reveals that the subject identification method based on ECG signal and CNNs provides remarkable results. The best accuracy value is 99.5% and is obtained for Inception-v3.
2022-04-18
Aivatoglou, Georgios, Anastasiadis, Mike, Spanos, Georgios, Voulgaridis, Antonis, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  A Tree-Based Machine Learning Methodology to Automatically Classify Software Vulnerabilities. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :312–317.
Software vulnerabilities have become a major problem for the security analysts, since the number of new vulnerabilities is constantly growing. Thus, there was a need for a categorization system, in order to group and handle these vulnerabilities in a more efficient way. Hence, the MITRE corporation introduced the Common Weakness Enumeration that is a list of the most common software and hardware vulnerabilities. However, the manual task of understanding and analyzing new vulnerabilities by security experts, is a very slow and exhausting process. For this reason, a new automated classification methodology is introduced in this paper, based on the vulnerability textual descriptions from National Vulnerability Database. The proposed methodology, combines textual analysis and tree-based machine learning techniques in order to classify vulnerabilities automatically. The results of the experiments showed that the proposed methodology performed pretty well achieving an overall accuracy close to 80%.