Biblio
In human-robot collaboration (HRC), human trust in the robot is the human expectation that a robot executes tasks with desired performance. A higher-level trust increases the willingness of a human operator to assign tasks, share plans, and reduce the interruption during robot executions, thereby facilitating human-robot integration both physically and mentally. However, due to real-world disturbances, robots inevitably make mistakes, decreasing human trust and further influencing collaboration. Trust is fragile and trust loss is triggered easily when robots show incapability of task executions, making the trust maintenance challenging. To maintain human trust, in this research, a trust repair framework is developed based on a human-to-robot attention transfer (H2R-AT) model and a user trust study. The rationale of this framework is that a prompt mistake correction restores human trust. With H2R-AT, a robot localizes human verbal concerns and makes prompt mistake corrections to avoid task failures in an early stage and to finally improve human trust. User trust study measures trust status before and after the behavior corrections to quantify the trust loss. Robot experiments were designed to cover four typical mistakes, wrong action, wrong region, wrong pose, and wrong spatial relation, validated the accuracy of H2R-AT in robot behavior corrections; a user trust study with 252 participants was conducted, and the changes in trust levels before and after corrections were evaluated. The effectiveness of the human trust repairing was evaluated by the mistake correction accuracy and the trust improvement.
This paper focuses on the typical business scenario of intelligent factory, it includes the manufacturing process, carries out hierarchical security protection, forms a full coverage industrial control security protection network, completes multi-means industrial control security direct protection, at the same time, it utilizes big data analysis, dynamically analyzes the network security situation, completes security early warning, realizes indirect protection, and finally builds a self sensing and self-adjusting industrial network security protection system It provides a reliable reference for the development of intelligent manufacturing industry.
Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.
K-anonymity is a popular model used in microdata publishing to protect individual privacy. This paper introduces the idea of ball tree and projection area density partition into k-anonymity algorithm.The traditional kd-tree implements the division by forming a super-rectangular, but the super-rectangular has the area angle, so it cannot guarantee that the records on the corner are most similar to the records in this area. In this paper, the super-sphere formed by the ball-tree is used to address this problem. We adopt projection area density partition to increase the density of the resulting recorded points. We implement our algorithm with the Gotrack dataset and the Adult dataset in UCI. The experimentation shows that the k-anonymity algorithm based on ball-tree and projection area density partition, obtains more anonymous groups, and the generalization rate is lower. The smaller the K is, the more obvious the result advantage is. The result indicates that our algorithm can make data usability even higher.
To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.
As trust becomes increasingly important in the software domain. Due to its complex composite concept, people face great challenges, especially in today's dynamic and constantly changing internet technology. In addition, measuring the software trustworthiness correctly and effectively plays a significant role in gaining users trust in choosing different software. In the context of security, trust is previously measured based on the vulnerability time occurrence to predict the total number of vulnerabilities or their future occurrence time. In this study, we proposed a new unified index called "loss speed index" that integrates the most important variables of software security such as vulnerability occurrence time, number and severity loss, which are used to evaluate the overall software trust measurement. Based on this new definition, a new model called software trustworthy security growth model (STSGM) has been proposed. This paper also aims at filling the gap by addressing the severity of vulnerabilities and proposed a vulnerability severity prediction model, the results are further evaluated by STSGM to estimate the future loss speed index. Our work has several features such as: (1) It is used to predict the vulnerability severity/type in future, (2) Unlike traditional evaluation methods like expert scoring, our model uses historical data to predict the future loss speed of software, (3) The loss metric value is used to evaluate the risk associated with different software, which has a direct impact on software trustworthiness. Experiments performed on real software vulnerability datasets and its results are analyzed to check the correctness and effectiveness of the proposed model.
The normal operation of key measurement and control equipment in power grid (KMCEPG) is of great significance for safe and stable operation of power grid. Firstly, this paper gives a systematic overview of KMCEPG. Secondly, the cyber security risks of KMCEPG on the main station / sub-station side, channel side and terminal side are analyzed and the related vulnerabilities are discovered. Thirdly, according to the risk analysis results, the attack process construction technology of KMCEPG is proposed, which provides the test process and attack ideas for the subsequent KMCEPG-related attack penetration. Fourthly, the simulation penetration test environment is built, and a series of attack tests are carried out on the terminal key control equipment by using the attack flow construction technology proposed in this paper. The correctness of the risk analysis and the effectiveness of the attack process construction technology are verified. Finally, the attack test results are analyzed, and the attack test cases of terminal critical control devices are constructed, which provide the basis for the subsequent attack test. The attack flow construction technology and attack test cases proposed in this paper improve the network security defense capability of key equipment of power grid, ensure the safe and stable operation of power grid, and have strong engineering application value.
Recently, IoT, 5G mobile, big data, and artificial intelligence are increasingly used in the real world. These technologies are based on convergenced in Cyber Physical System(Cps). Cps technology requires core technologies to ensure reliability, real-time, safety, autonomy, and security. CPS is the system that can connect between cyberspace and physical space. Cyberspace attacks are confused in the real world and have a lot of damage. The personal information that dealing in CPS has high confidentiality, so the policies and technique will needed to protect the attack in advance. If there is an attack on the CPS, not only personal information but also national confidential data can be leaked. In order to prevent this, the risk is measured using the Factor Analysis of Information Risk (FAIR) Model, which can measure risk by element for situational awareness in CPS environment. To reduce risk by preventing attacks in CPS, this paper measures risk after using the concept of Crime Prevention Through Environmental Design(CPTED).
The importance of Networked Control Systems (NCS) is steadily increasing due to recent trends such as smart factories. Correct functionality of such NCS needs to be protected as malfunctioning systems could have severe consequences for the controlled process or even threaten human lives. However, with the increase in NCS, also attacks targeting these systems are becoming more frequent. To mitigate attacks that utilize captured sensor data in an NCS, transferred data needs to be protected. While using well-known methods such as Transport Layer Security (TLS) might be suitable to protect the data, resource constraint devices such as sensors often are not powerful enough to perform the necessary cryptographic operations. Also, as we will show in this paper, applying simple encryption in an NCS may enable easy Denial-of-Service (DoS) attacks by attacking single bits of the encrypted data. Therefore, in this paper, we present a hardware-based approach that enables sensors to perform the necessary encryption while being robust against (injected) bit failures.
With the developing understanding of Information Security and digital assets, IT technology has put on tremendous importance of network admission control (NAC). In NAC architecture, admission decisions and resource reservations are taken at edge devices, rather than resources or individual routers within the network. The NAC architecture enables resilient resource reservation, maintaining reservations even after failures and intra-domain rerouting. Admission Control Networks destiny is based on IP networks through its Security and Quality of Service (QoS) demands for real time multimedia application via advance resource reservation techniques. To achieve Security & QoS demands, in real time performance networks, admission control algorithm decides whether the new traffic flow can be admitted to the network or not. Secure allocation of Peer for multimedia traffic flows with required performance is a great challenge in resource reservation schemes. In this paper, we have proposed our model for VoIP networks in order to achieve security services along with QoS, where admission control decisions are taken place at edge routers. We have analyzed and argued that the measurement based admission control should be done at edge routers which employs on-demand probing parallel from both edge routers to secure the source and destination nodes respectively. In order to achieve Security and QoS for a new call, we choose various probe packet sizes for voice and video calls respectively. Similarly a technique is adopted to attain a security allocation approach for selecting an admission control threshold by proposing our admission control algorithm. All results are tested on NS2 based simulation to evalualate the network performance of edge router based upon network admission control in VoIP traffic.