Visible to the public Biblio

Filters: Keyword is Loss measurement  [Clear All Filters]
2023-07-21
Dabush, Lital, Routtenberg, Tirza.  2022.  Detection of False Data Injection Attacks in Unobservable Power Systems by Laplacian Regularization. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM). :415—419.
The modern electrical grid is a complex cyber-physical system, and thus is vulnerable to measurement losses and attacks. In this paper, we consider the problem of detecting false data injection (FDI) attacks and bad data in unobservable power systems. Classical bad-data detection methods usually assume observable systems and cannot detect stealth FDI attacks. We use the smoothness property of the system states (voltages) w.r.t. the admittance matrix, which is also the Laplacian of the graph representation of the grid. First, we present the Laplacian-based regularized state estimator, which does not require full observability of the network. Then, we derive the Laplacian-regularized generalized likelihood ratio test (LR-GLRT). We show that the LR-GLRT has a component of a soft high-pass graph filter applied to the state estimator. Numerical results on the IEEE 118-bus system demonstrate that the LR-GLRT outperforms other detection approaches and is robust to missing data.
2022-12-01
Heinrichs, Markus, Kronberger, Rainer.  2021.  Digitally Tunable Frequency Selective Surface for a Physical Layer Security System in the 5 GHz Wi-Fi Band. 2020 International Symposium on Antennas and Propagation (ISAP). :267–268.
In this work, a digitally tunable Frequency Selec-tive Surface (FSS) for use in Physical Layer Security (PLS) systems is presented. The design of a unit cell is described, which is optimized by simulations for the frequency range of 5 GHz indoor Wi-Fi. Based on the developed unit cell, a prototype with 64 binary switchable elements is set up. The performance of the surface is demonstrated by measurements.
2022-10-04
Lee, Jian-Hsing, Nidhi, Karuna, Hung, Chung-Yu, Liao, Ting-Wei, Liu, Wu-Yang, Su, Hung-Der.  2021.  Hysteresis Effect Induces the Inductor Power Loss of Converter during the Voltage Conversion. 2021 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1–7.
A new methodology to calculate the hysteresis induced power loss of inductor from the measured waveforms of DC-to-DC converter during the voltage conversion is presented. From this study, we find that the duty cycles (D) of the buck and boost converters used till date for inductance current calculation are not exactly equal to VOUT/VIN and 1-VIN/VOUT as the inductance change induced by the hysteresis effect cannot be neglected. Although the increase in the loading currents of the converter increases the remanence magnetization of inductor at the turn-off time (toff), this remanence magnetization is destroyed by the turbulence induced vortex current at the transistor turn-on transient. So, the core power loss of inductor increases with the loading current of the converter and becomes much larger than other power losses and cannot be neglected for the power efficiency calculation during power stage design.
2022-09-16
Wu, Yiming, Lu, GeHao, Jin, Na, Fu, LiYu, Zhuan Zhao, Jing.  2021.  Trusted Fog Computing for Privacy Smart Contract Blockchain. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP). :1042—1047.
The fog platform is very suitable for time and location sensitive applications. Compared with cloud computing, fog computing faces new security and privacy challenges. This paper integrates blockchain nodes with fog nodes, and uses multi-party secure computing (MPC) in smart contracts to realize privacy-protected fog computing. MPC technology realizes encrypted input and output, so that participants can only get the output value of their own function. It is impossible to know the input and output of other people, and privacy calculation is realized. At the same time, the blockchain can perform network-wide verification and consensus on the results calculated by the MPC under the chain. Ensure the reliability of the calculation results. Due to the integration of blockchain and fog nodes, access control and encryption are guaranteed, integrity and isolation are provided, and privacy-sensitive data is controlled. As more complex topological structures emerge, the entire chain of fog nodes must be trusted. This ensures the network security of distributed data storage and network topology, users and fog service providers. Finally, trusted fog computing with privacy protection is realized.
2022-07-12
Özdemir, Durmuş, Çelik, Dilek.  2021.  Analysis of Encrypted Image Data with Deep Learning Models. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :121—126.
While various encryption algorithms ensure data security, it is essential to determine the accuracy and loss values and performance status in the analyzes made to determine encrypted data by deep learning. In this research, the analysis steps made by applying deep learning methods to encrypted cifar10 picture data are presented practically. The data was tried to be estimated by training with VGG16, VGG19, ResNet50 deep learning models. During this period, the network’s performance was tried to be measured, and the accuracy and loss values in these calculations were shown graphically.
2022-06-09
Luo, Ruijiao, Huang, Chao, Peng, Yuntao, Song, Boyi, Liu, Rui.  2021.  Repairing Human Trust by Promptly Correcting Robot Mistakes with An Attention Transfer Model. 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). :1928–1933.

In human-robot collaboration (HRC), human trust in the robot is the human expectation that a robot executes tasks with desired performance. A higher-level trust increases the willingness of a human operator to assign tasks, share plans, and reduce the interruption during robot executions, thereby facilitating human-robot integration both physically and mentally. However, due to real-world disturbances, robots inevitably make mistakes, decreasing human trust and further influencing collaboration. Trust is fragile and trust loss is triggered easily when robots show incapability of task executions, making the trust maintenance challenging. To maintain human trust, in this research, a trust repair framework is developed based on a human-to-robot attention transfer (H2R-AT) model and a user trust study. The rationale of this framework is that a prompt mistake correction restores human trust. With H2R-AT, a robot localizes human verbal concerns and makes prompt mistake corrections to avoid task failures in an early stage and to finally improve human trust. User trust study measures trust status before and after the behavior corrections to quantify the trust loss. Robot experiments were designed to cover four typical mistakes, wrong action, wrong region, wrong pose, and wrong spatial relation, validated the accuracy of H2R-AT in robot behavior corrections; a user trust study with 252 participants was conducted, and the changes in trust levels before and after corrections were evaluated. The effectiveness of the human trust repairing was evaluated by the mistake correction accuracy and the trust improvement.

Yu, Siyu, Chen, Ningjiang, Liang, Birui.  2021.  Predicting gray fault based on context graph in container-based cloud. 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :224–234.
Distributed Container-based cloud system has the advantages of rapid deployment, efficient virtualization, simplified configuration, and well-scalability. However, good scalability may slow down container-based cloud because it is more vulnerable to gray faults. As a new fault model similar with fail-slow and limping, gray fault has so many root causes that current studies focus only on a certain type of fault are not sufficient. And unlike traditional cloud, container is a black box provided by service providers, making it difficult for traditional API intrusion-based diagnosis methods to implement. A better approach should shield low-level causes from high-level processing. A Gray Fault Prediction Strategy based on Context Graph is proposed according to the correlation between gray faults and application scenarios. From historical data, the performance metrics related to how above context evolve to fault scenarios are established, and scenarios represented by corresponding data are stored in a graph. A scenario will be predicted as a fault scenario, if its isomorphic scenario is found in the graph. The experimental results show that the success rate of prediction is stable at more than 90%, and it is verified the overhead is optimized well.
2022-03-02
Tian, Yali, Li, Gang, Han, Yonglei.  2021.  Analysis on Solid Protection System of Industrial Control Network Security in Intelligent Factory. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :52–55.

This paper focuses on the typical business scenario of intelligent factory, it includes the manufacturing process, carries out hierarchical security protection, forms a full coverage industrial control security protection network, completes multi-means industrial control security direct protection, at the same time, it utilizes big data analysis, dynamically analyzes the network security situation, completes security early warning, realizes indirect protection, and finally builds a self sensing and self-adjusting industrial network security protection system It provides a reliable reference for the development of intelligent manufacturing industry.

2021-06-02
Zegers, Federico M., Hale, Matthew T., Shea, John M., Dixon, Warren E..  2020.  Reputation-Based Event-Triggered Formation Control and Leader Tracking with Resilience to Byzantine Adversaries. 2020 American Control Conference (ACC). :761—766.
A distributed event-triggered controller is developed for formation control and leader tracking (FCLT) with robustness to adversarial Byzantine agents for a class of heterogeneous multi-agent systems (MASs). A reputation-based strategy is developed for each agent to detect Byzantine agent behaviors within their neighbor set and then selectively disregard Byzantine state information. Selectively ignoring Byzantine agents results in time-varying discontinuous changes to the network topology. Nonsmooth dynamics also result from the use of the event-triggered strategy enabling intermittent communication. Nonsmooth Lyapunov methods are used to prove stability and FCLT of the MAS consisting of the remaining cooperative agents.
2021-04-08
Jin, R., He, X., Dai, H..  2019.  On the Security-Privacy Tradeoff in Collaborative Security: A Quantitative Information Flow Game Perspective. IEEE Transactions on Information Forensics and Security. 14:3273–3286.
To contest the rapidly developing cyber-attacks, numerous collaborative security schemes, in which multiple security entities can exchange their observations and other relevant data to achieve more effective security decisions, are proposed and developed in the literature. However, the security-related information shared among the security entities may contain some sensitive information and such information exchange can raise privacy concerns, especially when these entities belong to different organizations. With such consideration, the interplay between the attacker and the collaborative entities is formulated as Quantitative Information Flow (QIF) games, in which the QIF theory is adapted to measure the collaboration gain and the privacy loss of the entities in the information sharing process. In particular, three games are considered, each corresponding to one possible scenario of interest in practice. Based on the game-theoretic analysis, the expected behaviors of both the attacker and the security entities are obtained. In addition, the simulation results are presented to validate the analysis.
2021-01-11
Farokhi, F..  2020.  Temporally Discounted Differential Privacy for Evolving Datasets on an Infinite Horizon. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :1–8.
We define discounted differential privacy, as an alternative to (conventional) differential privacy, to investigate privacy of evolving datasets, containing time series over an unbounded horizon. We use privacy loss as a measure of the amount of information leaked by the reports at a certain fixed time. We observe that privacy losses are weighted equally across time in the definition of differential privacy, and therefore the magnitude of privacy-preserving additive noise must grow without bound to ensure differential privacy over an infinite horizon. Motivated by the discounted utility theory within the economics literature, we use exponential and hyperbolic discounting of privacy losses across time to relax the definition of differential privacy under continual observations. This implies that privacy losses in distant past are less important than the current ones to an individual. We use discounted differential privacy to investigate privacy of evolving datasets using additive Laplace noise and show that the magnitude of the additive noise can remain bounded under discounted differential privacy. We illustrate the quality of privacy-preserving mechanisms satisfying discounted differential privacy on smart-meter measurement time-series of real households, made publicly available by Ausgrid (an Australian electricity distribution company).
2020-12-01
Ullman, D., Malle, B. F..  2019.  Measuring Gains and Losses in Human-Robot Trust: Evidence for Differentiable Components of Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :618—619.

Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.

2020-08-13
Cheng, Chen, Xiaoli, Liu, Linfeng, Wei, Longxin, Lin, Xiaofeng, Wu.  2019.  Algorithm for k-anonymity based on ball-tree and projection area density partition. 2019 14th International Conference on Computer Science Education (ICCSE). :972—975.

K-anonymity is a popular model used in microdata publishing to protect individual privacy. This paper introduces the idea of ball tree and projection area density partition into k-anonymity algorithm.The traditional kd-tree implements the division by forming a super-rectangular, but the super-rectangular has the area angle, so it cannot guarantee that the records on the corner are most similar to the records in this area. In this paper, the super-sphere formed by the ball-tree is used to address this problem. We adopt projection area density partition to increase the density of the resulting recorded points. We implement our algorithm with the Gotrack dataset and the Adult dataset in UCI. The experimentation shows that the k-anonymity algorithm based on ball-tree and projection area density partition, obtains more anonymous groups, and the generalization rate is lower. The smaller the K is, the more obvious the result advantage is. The result indicates that our algorithm can make data usability even higher.

2020-05-26
Fu, Yulong, Li, Guoquan, Mohammed, Atiquzzaman, Yan, Zheng, Cao, Jin, Li, Hui.  2019.  A Study and Enhancement to the Security of MANET AODV Protocol Against Black Hole Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1431–1436.
Mobile AdHoc Networks (MANET) can be fast implemented, and it is very popular in many specific network requirements, such as UAV (Unmanned Aerial Unit), Disaster Recovery and IoT (Internet of Things) etc. However, MANET is also vulnerable. AODV (Ad hoc On-Demand Distance Vector Routing) protocol is one type of MANET routing protocol and many attacks can be implemented to break the connections on AODV based AdHoc networks. In this article, aim of protecting the MANET security, we modeled the AODV protocol with one type of Automata and analyzed the security vulnerabilities of it; then based on the analyzing results, we proposed an enhancement to AODV protocol to against the Black Hole Attacks. We also implemented the proposed enhancement in NS3 simulator and verified the correctness, usability and efficiency.
Li, Guoquan, Yan, Zheng, Fu, Yulong.  2018.  A Study and Simulation Research of Blackhole Attack on Mobile AdHoc Network. 2018 IEEE Conference on Communications and Network Security (CNS). :1–6.
Mobile ad hoc network (MANET) is a kind of mobile multi-hop network which can transmit data through intermediate nodes, it has been widely used and become important since the growing of the market of Internet of Things (IoT). However, the transmissions on MANET are vulnerable, it usually suffered with many internal or external attacks, and the research on security topics of MANET are becoming more and more hot recently. Blackhole Attack is one of the most famous attacks to MANET. In this paper, we focus on the Blackhole Attack in AODV protocol, and use NS-3 network simulator to study the impact of Blackhole Attack on network performance parameters, such as the Throughput, End-to-End Delay and Packet Loss Rate. We further analyze the changes in network performance by adjusting the number of blackhole nodes and total nodes, and the movement speed of mobile nodes. The experimental results not only reflect the behaviors of the Blackhole Attack and its damage to the network, but also provide the characteristics of Blackhole Attacks clearly. This is helpful to the research of Blackhole Attack feature extraction and MANET security measurement.
2020-04-20
Khan, Muhammad Imran, Foley, Simon N., O'Sullivan, Barry.  2019.  PriDe: A Quantitative Measure of Privacy-Loss in Interactive Querying Settings. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
This paper presents, PriDe, a model to measure the deviation of an analyst's (user) querying behaviour from normal querying behaviour. The deviation is measured in terms of privacy, that is to say, how much of the privacy loss has incurred due to this shift in querying behaviour. The shift is represented in terms of a score - a privacy-loss score, the higher the score the more the loss in privacy. Querying behaviour of analysts are modelled using n-grams of SQL query and subsequently, behavioural profiles are constructed. Profiles are then compared in terms of privacy resulting in a quantified score indicating the privacy loss.
Yuan, Jing, Ou, Yuyi, Gu, Guosheng.  2019.  An Improved Privacy Protection Method Based on k-degree Anonymity in Social Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :416–420.

To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.

Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
2020-04-03
Jabeen, Gul, Ping, Luo.  2019.  A Unified Measurable Software Trustworthy Model Based on Vulnerability Loss Speed Index. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :18—25.

As trust becomes increasingly important in the software domain. Due to its complex composite concept, people face great challenges, especially in today's dynamic and constantly changing internet technology. In addition, measuring the software trustworthiness correctly and effectively plays a significant role in gaining users trust in choosing different software. In the context of security, trust is previously measured based on the vulnerability time occurrence to predict the total number of vulnerabilities or their future occurrence time. In this study, we proposed a new unified index called "loss speed index" that integrates the most important variables of software security such as vulnerability occurrence time, number and severity loss, which are used to evaluate the overall software trust measurement. Based on this new definition, a new model called software trustworthy security growth model (STSGM) has been proposed. This paper also aims at filling the gap by addressing the severity of vulnerabilities and proposed a vulnerability severity prediction model, the results are further evaluated by STSGM to estimate the future loss speed index. Our work has several features such as: (1) It is used to predict the vulnerability severity/type in future, (2) Unlike traditional evaluation methods like expert scoring, our model uses historical data to predict the future loss speed of software, (3) The loss metric value is used to evaluate the risk associated with different software, which has a direct impact on software trustworthiness. Experiments performed on real software vulnerability datasets and its results are analyzed to check the correctness and effectiveness of the proposed model.

2020-01-20
Xiao, Kaiming, Zhu, Cheng, Xie, Junjie, Zhou, Yun, Zhu, Xianqiang, Zhang, Weiming.  2018.  Dynamic Defense Strategy against Stealth Malware Propagation in Cyber-Physical Systems. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1790–1798.
Stealth malware, a representative tool of advanced persistent threat (APT) attacks, in particular poses an increased threat to cyber-physical systems (CPS). Due to the use of stealthy and evasive techniques (e.g., zero-day exploits, obfuscation techniques), stealth malwares usually render conventional heavyweight countermeasures (e.g., exploits patching, specialized ant-malware program) inapplicable. Light-weight countermeasures (e.g., containment techniques), on the other hand, can help retard the spread of stealth malwares, but the ensuing side effects might violate the primary safety requirement of CPS. Hence, defenders need to find a balance between the gain and loss of deploying light-weight countermeasures. To address this challenge, we model the persistent anti-malware process as a shortest-path tree interdiction (SPTI) Stackelberg game, and safety requirements of CPS are introduced as constraints in the defender's decision model. Specifically, we first propose a static game (SSPTI), and then extend it to a multi-stage dynamic game (DSPTI) to meet the need of real-time decision making. Both games are modelled as bi-level integer programs, and proved to be NP-hard. We then develop a Benders decomposition algorithm to achieve the Stackelberg Equilibrium of SSPTI. Finally, we design a model predictive control strategy to solve DSPTI approximately by sequentially solving an approximation of SSPTI. The extensive simulation results demonstrate that the proposed dynamic defense strategy can achieve a balance between fail-secure ability and fail-safe ability while retarding the stealth malware propagation in CPS.
2019-11-19
Fei, Jiaxuan, Shi, Congcong, Yuan, Xuechong, Zhang, Rui, Chen, Wei, Yang, Yi.  2019.  Reserch on Cyber Attack of Key Measurement and Control Equipment in Power Grid. 2019 IEEE International Conference on Energy Internet (ICEI). :31-36.

The normal operation of key measurement and control equipment in power grid (KMCEPG) is of great significance for safe and stable operation of power grid. Firstly, this paper gives a systematic overview of KMCEPG. Secondly, the cyber security risks of KMCEPG on the main station / sub-station side, channel side and terminal side are analyzed and the related vulnerabilities are discovered. Thirdly, according to the risk analysis results, the attack process construction technology of KMCEPG is proposed, which provides the test process and attack ideas for the subsequent KMCEPG-related attack penetration. Fourthly, the simulation penetration test environment is built, and a series of attack tests are carried out on the terminal key control equipment by using the attack flow construction technology proposed in this paper. The correctness of the risk analysis and the effectiveness of the attack process construction technology are verified. Finally, the attack test results are analyzed, and the attack test cases of terminal critical control devices are constructed, which provide the basis for the subsequent attack test. The attack flow construction technology and attack test cases proposed in this paper improve the network security defense capability of key equipment of power grid, ensure the safe and stable operation of power grid, and have strong engineering application value.

2019-03-28
Joo, M., Seo, J., Oh, J., Park, M., Lee, K..  2018.  Situational Awareness Framework for Cyber Crime Prevention Model in Cyber Physical System. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :837-842.

Recently, IoT, 5G mobile, big data, and artificial intelligence are increasingly used in the real world. These technologies are based on convergenced in Cyber Physical System(Cps). Cps technology requires core technologies to ensure reliability, real-time, safety, autonomy, and security. CPS is the system that can connect between cyberspace and physical space. Cyberspace attacks are confused in the real world and have a lot of damage. The personal information that dealing in CPS has high confidentiality, so the policies and technique will needed to protect the attack in advance. If there is an attack on the CPS, not only personal information but also national confidential data can be leaked. In order to prevent this, the risk is measured using the Factor Analysis of Information Risk (FAIR) Model, which can measure risk by element for situational awareness in CPS environment. To reduce risk by preventing attacks in CPS, this paper measures risk after using the concept of Crime Prevention Through Environmental Design(CPTED).

2018-10-26
Ulz, T., Pieber, T., Steger, C., Matischek, R., Bock, H..  2017.  Towards trustworthy data in networked control systems: A hardware-based approach. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

The importance of Networked Control Systems (NCS) is steadily increasing due to recent trends such as smart factories. Correct functionality of such NCS needs to be protected as malfunctioning systems could have severe consequences for the controlled process or even threaten human lives. However, with the increase in NCS, also attacks targeting these systems are becoming more frequent. To mitigate attacks that utilize captured sensor data in an NCS, transferred data needs to be protected. While using well-known methods such as Transport Layer Security (TLS) might be suitable to protect the data, resource constraint devices such as sensors often are not powerful enough to perform the necessary cryptographic operations. Also, as we will show in this paper, applying simple encryption in an NCS may enable easy Denial-of-Service (DoS) attacks by attacking single bits of the encrypted data. Therefore, in this paper, we present a hardware-based approach that enables sensors to perform the necessary encryption while being robust against (injected) bit failures.

2018-02-02
Arifeen, F. U., Ali, M., Ashraf, S..  2016.  QoS and security in VOIP networks through admission control mechanism. 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :373–380.

With the developing understanding of Information Security and digital assets, IT technology has put on tremendous importance of network admission control (NAC). In NAC architecture, admission decisions and resource reservations are taken at edge devices, rather than resources or individual routers within the network. The NAC architecture enables resilient resource reservation, maintaining reservations even after failures and intra-domain rerouting. Admission Control Networks destiny is based on IP networks through its Security and Quality of Service (QoS) demands for real time multimedia application via advance resource reservation techniques. To achieve Security & QoS demands, in real time performance networks, admission control algorithm decides whether the new traffic flow can be admitted to the network or not. Secure allocation of Peer for multimedia traffic flows with required performance is a great challenge in resource reservation schemes. In this paper, we have proposed our model for VoIP networks in order to achieve security services along with QoS, where admission control decisions are taken place at edge routers. We have analyzed and argued that the measurement based admission control should be done at edge routers which employs on-demand probing parallel from both edge routers to secure the source and destination nodes respectively. In order to achieve Security and QoS for a new call, we choose various probe packet sizes for voice and video calls respectively. Similarly a technique is adopted to attain a security allocation approach for selecting an admission control threshold by proposing our admission control algorithm. All results are tested on NS2 based simulation to evalualate the network performance of edge router based upon network admission control in VoIP traffic.