Biblio
Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.
Many organizations process and store classified data within their computer networks. Owing to the value of data that they hold; such organizations are more vulnerable to targets from adversaries. Accordingly, the sensitive organizations resort to an ‘air-gap’ approach on their networks, to ensure better protection. However, despite the physical and logical isolation, the attackers have successfully manifested their capabilities by compromising such networks; examples of Stuxnet and Agent.btz in view. Such attacks were possible due to the successful manipulation of human beings. It has been observed that to build up such attacks, persistent reconnaissance of the employees, and their data collection often forms the first step. With the rapid integration of social media into our daily lives, the prospects for data-seekers through that platform are higher. The inherent risks and vulnerabilities of social networking sites/apps have cultivated a rich environment for foreign adversaries to cherry-pick personal information and carry out successful profiling of employees assigned with sensitive appointments. With further targeted social engineering techniques against the identified employees and their families, attackers extract more and more relevant data to make an intelligent picture. Finally, all the information is fused to design their further sophisticated attacks against the air-gapped facility for data pilferage. In this regard, the success of the adversaries in harvesting the personal information of the victims largely depends upon the common errors committed by legitimate users while on duty, in transit, and after their retreat. Such errors would keep on repeating unless these are aligned with their underlying human behaviors and weaknesses, and the requisite mitigation framework is worked out.
Ultra high frequency (UHF) partial discharge detection technology has been widely used in on-line monitoring of electrical equipment, for the influence factors of UHF signal's transfer function is complicated, the calibration of UHF method is still not realized until now. In order to study the calibration influence factors of UHF partial discharge (PD) detector, the discharge mechanism of typical PD defects is analyzed, and use a PD UHF signal simulator with multiple adjustable parameters to simulate types of PD UHF signals of electrical equipment, then performed the relative experimental research in propagation characteristics and Sensor characteristics of UHF signals. It is concluded that the calibration reliability has big differences between UHF signal energy and discharge capacity of different discharge source. The calibration curve of corona discharge and suspended discharge which can representation the severity of equipment insulation defect more accurate, and the calibration curve of internal air gap discharge and dielectric surface discharge is poorer. The distance of UHF signal energy decays to stable period become smaller with increase of frequency, and the decay of UHF signal energy is irrelevant to its frequencies when the measuring angle is changing. The frequency range of measuring UHF signal depends on effective frequency range of measurement sensor, moreover, the gain and standing-wave ratio of sensor and the energy of the received signal manifested same change trend. Therefore, in order to calibration the UHF signal, it is necessary to comprehensive consideration the specific discharge type and measuring condition. The results provide the favorable reference for a further study to build the calibration system of UHF measuring method, and to promote the effective application of UHF method in sensor characteristic fault diagnosis and insulation evaluation of electrical equipment.
This paper presents a new micro-architectural vulnerability on the power management units of modern computers which creates an electromagnetic-based side-channel. The key observations that enable us to discover this sidechannel are: 1) in an effort to manage and minimize power consumption, modern microprocessors have a number of possible operating modes (power states) in which various sub-systems of the processor are powered down, 2) for some of the transitions between power states, the processor also changes the operating mode of the voltage regulator module (VRM) that supplies power to the affected sub-system, and 3) the electromagnetic (EM) emanations from the VRM are heavily dependent on its operating mode. As a result, these state-dependent EM emanations create a side-channel which can potentially reveal sensitive information about the current state of the processor and, more importantly, the programs currently being executed. To demonstrate the feasibility of exploiting this vulnerability, we create a covert channel by utilizing the changes in the processor's power states. We show how such a covert channel can be leveraged to exfiltrate sensitive information from a secured and completely isolated (air-gapped) laptop system by placing a compact, inexpensive receiver in proximity to that system. To further show the severity of this attack, we also demonstrate how such a covert channel can be established when the target and the receiver are several meters away from each other, including scenarios where the receiver and the target are separated by a wall. Compared to the state-of-the-art, the proposed covert channel has \textbackslashtextgreater3x higher bit-rate. Finally, to demonstrate that this new vulnerability is not limited to being used as a covert channel, we demonstrate how it can be used for attacks such as keystroke logging.
An air-gapped computer is physically isolated from unsecured networks to guarantee effective protection against data exfiltration. Due to air gaps, unauthorized data transfer seems impossible over legitimate communication channels, but in reality many so-called physical covert channels can be constructed to allow data exfiltration across the air gaps. Most of such covert channels are very slow and often require certain strict conditions to work (e.g., no physical obstacles between the sender and the receiver). In this paper, we introduce a new physical covert channel named BitJabber that is extremely fast and strong enough to even penetrate concrete walls. We show that this covert channel can be easily created by an unprivileged sender running on a victim’s computer. Specifically, the sender constructs the channel by using only memory accesses to modulate the electromagnetic (EM) signals generated by the DRAM clock. While possessing a very high bandwidth (up to 300,000 bps), this new covert channel is also very reliable (less than 1% error rate). More importantly, this covert channel can enable data exfiltration from an air-gapped computer enclosed in a room with thick concrete walls up to 15 cm.
Air-gapped networks achieve security by using the physical isolation to keep the computers and network from the Internet. However, magnetic covert channels based on CPU utilization have been proposed to help secret data to escape the Faraday-cage and the air-gap. Despite the success of such cover channels, they suffer from the high risk of being detected by the transmitter computer and the challenge of installing malware into such a computer. In this paper, we propose MagView, a distributed magnetic cover channel, where sensitive information is embedded in other data such as video and can be transmitted over the air-gapped internal network. When any computer uses the data such as playing the video, the sensitive information will leak through the magnetic covert channel. The "separation" of information embedding and leaking, combined with the fact that the covert channel can be created on any computer, overcomes these limitations. We demonstrate that CPU utilization for video decoding can be effectively controlled by changing the video frame type and reducing the quantization parameter without video quality degradation. We prototype MagView and achieve up to 8.9 bps throughput with BER as low as 0.0057. Experiments under different environment are conducted to show the robustness of MagView. Limitations and possible countermeasures are also discussed.
Gartner, a large research and advisory company, anticipates that by 2024 80% of security operation centers (SOCs) will use machine learning (ML) based solutions to enhance their operations.11https://www.ciodive.com/news/how-data-science-tools-can-lighten-the-load-for-cybersecurity-teams/572209/ In light of such widespread adoption, it is vital for the research community to identify and address usability concerns. This work presents the results of the first in situ usability assessment of ML-based tools. With the support of the US Navy, we leveraged the national cyber range-a large, air-gapped cyber testbed equipped with state-of-the-art network and user emulation capabilities-to study six US Naval SOC analysts' usage of two tools. Our analysis identified several serious usability issues, including multiple violations of established usability heuristics for user interface design. We also discovered that analysts lacked a clear mental model of how these tools generate scores, resulting in mistrust \$a\$ and/or misuse of the tools themselves. Surprisingly, we found no correlation between analysts' level of education or years of experience and their performance with either tool, suggesting that other factors such as prior background knowledge or personality play a significant role in ML-based tool usage. Our findings demonstrate that ML-based security tool vendors must put a renewed focus on working with analysts, both experienced and inexperienced, to ensure that their systems are usable and useful in real-world security operations settings.