Visible to the public Biblio

Found 12044 results

Filters: Keyword is Resiliency  [Clear All Filters]
2018-09-12
Januário, Fábio, Cardoso, Alberto, Gil, Paulo.  2017.  A Multi-Agent Framework for Resilient Enhancement in Networked Control Systems. Proceedings of the 9th International Conference on Computer and Automation Engineering. :291–295.
Recent advances on the integration of control systems with state of the art information technologies have brought into play new uncertainties, not only associated with the physical world, but also from a cyber-space's perspective. In cyber-physical environments, awareness and resilience are invaluable properties. The paper focuses on the development of an architecture relying on a hierarchical multi-agent framework for resilience enhancement. This framework was evaluated on a test-bed comprising several distributed computational devices and heterogeneous communications. Results from tests prove the relevance of the proposed approach.
Chhokra, Ajay, Kulkarni, Amogh, Hasan, Saqib, Dubey, Abhishek, Mahadevan, Nagabhushan, Karsai, Gabor.  2017.  A Systematic Approach of Identifying Optimal Load Control Actions for Arresting Cascading Failures in Power Systems. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :41–46.
Cascading outages in power networks cause blackouts which lead to huge economic and social consequences. The traditional form of load shedding is avoidable in many cases by identifying optimal load control actions. However, if there is a change in the system topology (adding or removing loads, lines etc), the calculations have to be performed again. This paper addresses this problem by providing a workflow that 1) generates system models from IEEE CDF specifications, 2) identifies a collection of blackout causing contingencies, 3) dynamically sets up an optimization problem, and 4) generates a table of mitigation strategies in terms of minimal load curtailment. We demonstrate the applicability of our proposed methodology by finding load curtailment actions for N-k contingencies (k = 1, 2, 3) in IEEE 14 Bus system.
Tian, Jue, Tan, Rui, Guan, Xiaohong, Liu, Ting.  2017.  Hidden Moving Target Defense in Smart Grids. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :21–26.
Recent research has proposed a moving target defense (MTD) approach that actively changes transmission line susceptance to preclude stealthy false data injection (FDI) attacks against the state estimation of a smart grid. However, existing studies were often conducted under a less adversarial setting, in that they ignore the possibility that an alert attacker can also try to detect the activation of MTD and then cancel any FDI attack until they learn the new system configuration after MTD. Indeed, in this paper, we show that this can be achieved easily by the attacker. To improve the stealthiness of MTD against the attacker, we propose a hidden MTD approach that maintains the power flows of the whole grid after MTD. We develop an algorithm to construct the hidden MTD and analyze its feasibility condition when only a subset of transmission lines can adjust susceptance. Simulations are conducted to demonstrate the effectiveness of the hidden MTD against alert attackers under realistic settings.
Yoon, Man-Ki, Liu, Bo, Hovakimyan, Naira, Sha, Lui.  2017.  VirtualDrone: Virtual Sensing, Actuation, and Communication for Attack-resilient Unmanned Aerial Systems. Proceedings of the 8th International Conference on Cyber-Physical Systems. :143–154.

As modern unmanned aerial systems (UAS) continue to expand the frontiers of automation, new challenges to security and thus its safety are emerging. It is now difficult to completely secure modern UAS platforms due to their openness and increasing complexity. We present the VirtualDrone Framework, a software architecture that enables an attack-resilient control of modern UAS. It allows the system to operate with potentially untrustworthy software environment by virtualizing the sensors, actuators, and communication channels. The framework provides mechanisms to monitor physical and logical system behaviors and to detect security and safety violations. Upon detection of such an event, the framework switches to a trusted control mode in order to override malicious system state and to prevent potential safety violations. We built a prototype quadcoper running an embedded multicore processor that features a hardware-assisted virtualization technology. We present extensive experimental study and implementation details, and demonstrate how the framework can ensure the robustness of the UAS in the presence of security breaches.

Park, Sangdon, Weimer, James, Lee, Insup.  2017.  Resilient Linear Classification: An Approach to Deal with Attacks on Training Data. Proceedings of the 8th International Conference on Cyber-Physical Systems. :155–164.
Data-driven techniques are used in cyber-physical systems (CPS) for controlling autonomous vehicles, handling demand responses for energy management, and modeling human physiology for medical devices. These data-driven techniques extract models from training data, where their performance is often analyzed with respect to random errors in the training data. However, if the training data is maliciously altered by attackers, the effect of these attacks on the learning algorithms underpinning data-driven CPS have yet to be considered. In this paper, we analyze the resilience of classification algorithms to training data attacks. Specifically, a generic metric is proposed that is tailored to measure resilience of classification algorithms with respect to worst-case tampering of the training data. Using the metric, we show that traditional linear classification algorithms are resilient under restricted conditions. To overcome these limitations, we propose a linear classification algorithm with a majority constraint and prove that it is strictly more resilient than the traditional algorithms. Evaluations on both synthetic data and a real-world retrospective arrhythmia medical case-study show that the traditional algorithms are vulnerable to tampered training data, whereas the proposed algorithm is more resilient (as measured by worst-case tampering).
Lakshminarayana, Subhash, Teng, Teo Zhan, Yau, David K. Y., Tan, Rui.  2017.  Optimal Attack Against Cyber-Physical Control Systems with Reactive Attack Mitigation. Proceedings of the Eighth International Conference on Future Energy Systems. :179–190.
This paper studies the performance and resilience of a cyber-physical control system (CPCS) with attack detection and reactive attack mitigation. It addresses the problem of deriving an optimal sequence of false data injection attacks that maximizes the state estimation error of the system. The results provide basic understanding about the limit of the attack impact. The design of the optimal attack is based on a Markov decision process (MDP) formulation, which is solved efficiently using the value iteration method. Using the proposed framework, we quantify the effect of false positives and mis-detections on the system performance, which can help the joint design of the attack detection and mitigation. To demonstrate the use of the proposed framework in a real-world CPCS, we consider the voltage control system of power grids, and run extensive simulations using PowerWorld, a high-fidelity power system simulator, to validate our analysis. The results show that by carefully designing the attack sequence using our proposed approach, the attacker can cause a large deviation of the bus voltages from the desired set-point. Further, the results verify the optimality of the derived attack sequence and show that, to cause maximum impact, the attacker must carefully craft his attack to strike a balance between the attack magnitude and stealthiness, due to the simultaneous presence of attack detection and mitigation.
Alhafidh, B. M. H., Allen, W. H..  2017.  High Level Design of a Home Autonomous System Based on Cyber Physical System Modeling. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :45–52.
The process used to build an autonomous smart home system using Cyber-Physical Systems (CPS) principles has received much attention by researchers and developers. However, there are many challenges during the design and implementation of such a system, such as Portability, Timing, Prediction, and Integrity. This paper presents a novel modeling methodology for a smart home system in the scope of CyberPhysical interface that attempts to overcome these issues. We discuss a high-level design approach that simulates the first three levels of a 5C architecture in CPS layers in a smart home environment. A detailed description of the model design, architecture, and a software implementation via NetLogo simulation have been presented in this paper.
Jang, Uyeong, Wu, Xi, Jha, Somesh.  2017.  Objective Metrics and Gradient Descent Algorithms for Adversarial Examples in Machine Learning. Proceedings of the 33rd Annual Computer Security Applications Conference. :262–277.
Fueled by massive amounts of data, models produced by machine-learning (ML) algorithms are being used in diverse domains where security is a concern, such as, automotive systems, finance, health-care, computer vision, speech recognition, natural-language processing, and malware detection. Of particular concern is use of ML in cyberphysical systems, such as driver-less cars and aviation, where the presence of an adversary can cause serious consequences. In this paper we focus on attacks caused by adversarial samples, which are inputs crafted by adding small, often imperceptible, perturbations to force a ML model to misclassify. We present a simple gradient-descent based algorithm for finding adversarial samples, which performs well in comparison to existing algorithms. The second issue that this paper tackles is that of metrics. We present a novel metric based on few computer-vision algorithms for measuring the quality of adversarial samples.
2018-09-05
Kang, K., Baek, Y., Lee, S., Son, S. H..  2017.  An Attack-Resilient Source Authentication Protocol in Controller Area Network. 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :109–118.

While vehicle to everything (V2X) communication enables safety-critical automotive control systems to better support various connected services to improve safety and convenience of drivers, they also allow automotive attack surfaces to increase dynamically in modern vehicles. Many researchers as well as hackers have already demonstrated that they can take remote control of the targeted car by exploiting the vulnerabilities of in-vehicle networks such as Controller Area Networks (CANs). For assuring CAN security, we focus on how to authenticate electronic control units (ECUs) in real-time by addressing the security challenges of in-vehicle networks. In this paper, we propose a novel and lightweight authentication protocol with an attack-resilient tree algorithm, which is based on one-way hash chain. The protocol can be easily deployed in CAN by performing a firmware update of ECU. We have shown analytically that the protocol achieves a high level of security. In addition, the performance of the proposed protocol is validated on CANoe simulator for virtual ECUs and Freescale S12XF used in real vehicles. The results show that our protocol is more efficient than other authentication protocol in terms of authentication time, response time, and service delay.

Buttigieg, R., Farrugia, M., Meli, C..  2017.  Security issues in controller area networks in automobiles. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :93–98.
Modern vehicles may contain a considerable number of ECUs (Electronic Control Units) which are connected through various means of communication, with the CAN (Controller Area Network) protocol being the most widely used. However, several vulnerabilities such as the lack of authentication and the lack of data encryption have been pointed out by several authors, which ultimately render vehicles unsafe to their users and surroundings. Moreover, the lack of security in modern automobiles has been studied and analyzed by other researchers as well as several reports about modern car hacking have (already) been published. The contribution of this work aimed to analyze and test the level of security and how resilient is the CAN protocol by taking a BMW E90 (3-series) instrument cluster as a sample for a proof of concept study. This investigation was carried out by building and developing a rogue device using cheap commercially available components while being connected to the same CAN-Bus as a man in the middle device in order to send spoofed messages to the instrument cluster.
King, Z., Yu, Shucheng.  2017.  Investigating and securing communications in the Controller Area Network (CAN). 2017 International Conference on Computing, Networking and Communications (ICNC). :814–818.
The Controller Area Network (CAN) is a broadcast communications network invented by Robert Bosch GmbH in 1986. CAN is the standard communication network found in automobiles, industry equipment, and many space applications. To be used in these environments, CAN is designed for efficiency and reliability, rather than security. This research paper closely examines the security risks within the CAN protocol and proposes a feasible solution. In this research, we investigate the problems with implementing certain security features in the CAN protocol, such as message authentication and protections against replay and denial-of-service (DoS) attacks. We identify the restrictions of the CAN bus, and we demonstrate how our proposed implementation meets these restrictions. Many previously proposed solutions lack security, feasibility, and/or efficiency; however, a solution must not drastically hinder the real-time operation speed of the network. The solution proposed in this research is tested with a simulative CAN environment. This paper proposes an alteration to the standard CAN bus nodes and the CAN protocol to better protect automobiles and other CAN-related systems from attacks.
Haken, Gareth, Markantonakis, Konstantinos, Gurulian, Iakovos, Shepherd, Carlton, Akram, Raja Naeem.  2017.  Evaluation of Apple iDevice Sensors As a Potential Relay Attack Countermeasure for Apple Pay. Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security. :21–32.
Traditional countermeasures to relay attacks are difficult to implement on mobile devices due to hardware limitations. Establishing proximity of a payment device and terminal is the central notion of most relay attack countermeasures, and mobile devices offer new and exciting possibilities in this area of research. One such possibility is the use of on-board sensors to measure ambient data at both the payment device and terminal, with a comparison made to ascertain whether the device and terminal are in close proximity. This project focuses on the iPhone, specifically the iPhone 6S, and the potential use of its sensors to both establish proximity to a payment terminal and protect Apple Pay against relay attacks. The iPhone contains 12 sensors in total, but constraints introduced by payment schemes mean only 5 were deemed suitable to be used for this study. A series of mock transactions and relay attack attempts are enacted using an iOS application written specifically for this study. Sensor data is recorded, and then analysed to ascertain its accuracy and suitability for both proximity detection and relay attack countermeasures.
Chaiphet, Chiraphat, Ngamsuriyaroj, Sudsanguan, Awad, Ahmed, Jacob, Betran, Gakos, Ioannis, Grajkowski, Wiktor.  2017.  Secure Enclave for TLS Web Server on Untrusted Environment. Proceedings of the 2017 the 7th International Conference on Communication and Network Security. :27–31.
Web servers use SSL/TLS to establish secure communication between clients and servers. The mechanism of SSL/TLS relies on a key pair to validate the server and to protect the confidentiality of the data. However, many websites are running on third-party servers or on cloud environments where website owners have no control over the physical servers or the software including the operating systems but still need to trust and store the private key on the servers. While it is common to store the encrypted key on the disk, the web server still need a decrypted key inside the memory during the operation. Thus, an adversary could obtain the private key residing on the web server's memory. In this paper, we propose a secure enclave for a web server running the high privilege code that handles the secret keys inside an encrypted memory area by utilizing Intel Software Guard Extension (SGX) whereas other components of the web server outside the trusted computing base are left intact. The experimental results show 19% to 38% implementation overhead depending on which cipher suite is used and how a session key is handled.
Ouaissa, Mariya, Rhattoy, A., Lahmer, M..  2017.  Group Access Authentication of Machine to Machine Communications in LTE Networks. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :50:1–50:5.
Today Machine to Machine (M2M) communications are very expanded in many application areas. M2M devices are likely to be small and able to operate for long periods and transmit data through wireless links, it is also defined as machine type communication (MTC) in Release 10 of the 3GPP "3rd Generation Partnership Project". Recently, most research has focused on congestion control, sensing information and control technologies and resource management, etc, but there are not many studies on the security aspects. Indeed, M2M communications and equipments may be exposed to different types of attacks (physical attacks on equipment and recovery of sensitive data, configurations attacks to compromise the software, attacks on the communications protocol, etc). In this article we introduce security into the M2M architecture and discuss the most important question of security, which is the group access authentication by modifying existing authentication protocols, such as group authentication and key agreement protocol used to resolve the group access authentication for M2M.
Chen, Yizheng, Nadji, Yacin, Kountouras, Athanasios, Monrose, Fabian, Perdisci, Roberto, Antonakakis, Manos, Vasiloglou, Nikolaos.  2017.  Practical Attacks Against Graph-based Clustering. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1125–1142.
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
Wang, Eric, Xu, William, Sastry, Suhas, Liu, Songsong, Zeng, Kai.  2017.  Hardware Module-based Message Authentication in Intra-vehicle Networks. Proceedings of the 8th International Conference on Cyber-Physical Systems. :207–216.
The Controller Area Network (CAN) is a widely used industry-standard intra-vehicle broadcast network that connects the Electronic Control Units (ECUs) which control most car systems. The CAN contains substantial vulnerabilities that can be exploited by attackers to gain control of the vehicle, due to its lack of security measures. To prevent an attacker from sending malicious messages through the CAN bus to take over a vehicle, we propose the addition of a secure hardware-based module, or Security ECU (SECU), onto the CAN bus. The SECU can perform key distribution and message verification, as well as corrupting malicious messages before they are fully received by an ECU. Only software modification is needed for existing ECUs, without changing the CAN protocol. This provides backward compatibility with existing CAN systems. Furthermore, we collect 6.673 million CAN bus messages from various cars, and find that the CAN messages collectively have low entropy, with an average of 11.915 bits. This finding motivates our proposal for CAN bus message compression, which allows us to significantly reduce message size to fit the message and its message authentication code (MAC) within one CAN frame, enabling fast authentication. Since ECUs only need to generate the MACs (and not verify them), the delay and computation overhead are also reduced compared to traditional authentication mechanisms. Our authentication mechanism is implemented on a realistic testbed using industry standard MCP2551 CAN transceivers and Raspberry Pi embedded systems. Experimental results demonstrate that our mechanism can achieve real-time message authentication on the CAN bus with minimal latency.
Murvay, Pal-Stefan, Groza, Bogdan.  2017.  DoS Attacks on Controller Area Networks by Fault Injections from the Software Layer. Proceedings of the 12th International Conference on Availability, Reliability and Security. :71:1–71:10.
The Controller Area Network (CAN) is still the most widely employed bus in the automotive sector. Its lack of security mechanisms led to a high number of attacks and consequently several security countermeasures were proposed, i.e., authentication protocols or intrusion detection mechanisms. We discuss vulnerabilities of the CAN data link layer that can be triggered from the application level with the use of an off the shelf CAN transceiver. Namely, due to the wired-AND design of the CAN bus, dominant bits will always overwrite recessive ones, a functionality normally used to assure priority for frames with low value identifiers. We exploit this characteristic and show Denial of Service attacks both on senders and receivers based on bit injections by using bit banging to maliciously control the CAN transceiver. We demonstrate the effects and limitations of such attacks through experimental analysis and discuss possible countermeasures. In particular, these attacks may have high impact on centralized authentication mechanisms that were frequently proposed in the literature since these attacks can place monitoring nodes in a bus-off state for certain periods of time.
Sajjad, Imran, Sharma, Rajnikant, Gerdes, Ryan.  2017.  A Game-Theoretic Approach and Evaluation of Adversarial Vehicular Platooning. Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles. :35–41.
In this paper, we consider an attack on a string of automated vehicles, or platoons, from a game-theoretic standpoint. Game theory enables us to ask the question of optimality in an adversarial environment; what is the optimal strategy that an attacker can use to disrupt the operation of automated vehicles, considering that the defenders are also optimally trying to maintain normal operation. We formulate a zero-sum game and find optimal controllers for different game parameters. A platoon is then simulated and its closed loop stability is then evaluated in the presence of an optimal attack. It is shown that with the constraint of optimality, the attacker cannot significantly degrade the stability of a vehicle platoon in nominal cases. It is motivated that in order to have an optimal solution that is nearly unstable, the game has to be formulated almost unfairly in favor of the attacker.
Gardiyawasam Pussewalage, Harsha S., Oleshchuk, Vladimir A..  2017.  A Distributed Multi-Authority Attribute Based Encryption Scheme for Secure Sharing of Personal Health Records. Proceedings of the 22Nd ACM on Symposium on Access Control Models and Technologies. :255–262.
Personal health records (PHR) are an emerging health information exchange model, which facilitates PHR owners to efficiently manage their health data. Typically, PHRs are outsourced and stored in third-party cloud platforms. Although, outsourcing private health data to third-party platforms is an appealing solution for PHR owners, it may lead to significant privacy concerns, because there is a higher risk of leaking private data to unauthorized parties. As a way of ensuring PHR owners' control of their outsourced PHR data, attribute based encryption (ABE) mechanisms have been considered due to the fact that such schemes facilitate a mechanism of sharing encrypted data among a set of intended recipients. However, such existing PHR solutions suffer from inflexibility and scalability issues due to the limitations associated with the adopted ABE mechanisms. To address these issues, we propose a distributed multi-authority ABE scheme and thereby we show how a patient-centric, attribute based PHR sharing scheme which can provide flexible access for both professional users such as doctors as well as personal users such as family and friends is realized. We have shown that the proposed scheme supports on-demand user revocation as well as secure under standard security assumptions. In addition, the simulation results provide evidence for the fact that our scheme can function efficiently in practice. Furthermore, we have shown that the proposed scheme can cater the access requirements associated with distributed multiuser PHR sharing environments as well as more realistic and scalable compared with similar existing PHR sharing schemes.
Maggio, Martina, Papadopoulos, Alessandro Vittorio, Filieri, Antonio, Hoffmann, Henry.  2017.  Automated Control of Multiple Software Goals Using Multiple Actuators. Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. :373–384.

Modern software should satisfy multiple goals simultaneously: it should provide predictable performance, be robust to failures, handle peak loads and deal seamlessly with unexpected conditions and changes in the execution environment. For this to happen, software designs should account for the possibility of runtime changes and provide formal guarantees of the software's behavior. Control theory is one of the possible design drivers for runtime adaptation, but adopting control theoretic principles often requires additional, specialized knowledge. To overcome this limitation, automated methodologies have been proposed to extract the necessary information from experimental data and design a control system for runtime adaptation. These proposals, however, only process one goal at a time, creating a chain of controllers. In this paper, we propose and evaluate the first automated strategy that takes into account multiple goals without separating them into multiple control strategies. Avoiding the separation allows us to tackle a larger class of problems and provide stronger guarantees. We test our methodology's generality with three case studies that demonstrate its broad applicability in meeting performance, reliability, quality, security, and energy goals despite environmental or requirements changes.

Chowdhary, Ankur, Pisharody, Sandeep, Alshamrani, Adel, Huang, Dijiang.  2017.  Dynamic Game Based Security Framework in SDN-enabled Cloud Networking Environments. Proceedings of the ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :53–58.
SDN provides a way to manage complex networks by introducing programmability and abstraction of the control plane. All networks suffer from attacks to critical infrastructure and services such as DDoS attacks. We make use of the programmability provided by the SDN environment to provide a game theoretic attack analysis and countermeasure selection model in this research work. The model is based on reward and punishment in a dynamic game with multiple players. The network bandwidth of attackers is downgraded for a certain period of time, and restored to normal when the player resumes cooperation. The presented solution is based on Nash Folk Theorem, which is used to implement a punishment mechanism for attackers who are part of DDoS traffic, and reward for players who cooperate, in effect enforcing desired outcome for the network administrator.
Pejo, Balazs, Tang, Qiang.  2017.  To Cheat or Not to Cheat: A Game-Theoretic Analysis of Outsourced Computation Verification. Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. :3–10.

In the cloud computing era, in order to avoid computational burdens, many organizations tend to outsource their computations to third-party cloud servers. In order to protect service quality, the integrity of computation results need to be guaranteed. In this paper, we develop a game theoretic framework which helps the outsourcer to maximize its payoff while ensuring the desired level of integrity for the outsourced computation. We define two Stackelberg games and analyze the optimal setting's sensitivity for the parameters of the model.

Bissias, George, Levine, Brian N., Kapadia, Nikunj.  2017.  Market-based Security for Distributed Applications. Proceedings of the 2017 New Security Paradigms Workshop. :19–34.
Ethereum contracts can be designed to function as fully decentralized applications called DAPPs that hold financial assets, and many have already been fielded. Unfortunately, DAPPs can be hacked, and the assets they control can be stolen. A recent attack on an Ethereum decentralized application called The DAO demonstrated that smart contract bugs are more than an academic concern. Ether worth hundreds of millions of US dollars was extracted by an attacker from The DAO, sending the value of its tokens and the overall exchange price of ether itself tumbling. We present two market-based techniques for insuring the ether holdings of a DAPP. These mechanisms exist and are managed as part of the core programming of the DAPP, rather than as separate mechanisms managed by users. Our first technique is based on futures contracts indexed by the trade price of ether for DAPP tokens. Under fairly general circumstances, our technique is capable of recovering the majority of ether lost from theft with high probability even when all of the ether holdings are stolen; and the only cost to DAPP token holders is an adjustable ether withdrawal fee. As a second, complementary, technique we propose the use of Gated Public Offerings (GPO) as a mechanism that mitigates the effects of attackers that exploit DAPP withdrawal vulnerabilities. We show that using more than one public offering round encourages attackers to exploit the vulnerability early, or depending on certain factors, to delay exploitation (possibly indefinitely) and short tokens in the market instead. In both cases, less ether is ultimately stolen from the DAPP, and in the later case, some of the losses are transferred to the market.
Zhong, Q., Blaabjerg, F., Cecati, C..  2017.  Power-Electronics-Enabled Autonomous Power Systems. IEEE Transactions on Industrial Electronics. 64:5904–5906.

The eleven papers in this special section focus on power electronics-enabled autonomous systems. Power systems are going through a paradigm change from centralized generation to distributed generation and further onto smart grid. Millions of relatively small distributed energy resources (DER), including wind turbines, solar panels, electric vehicles and energy storage systems, and flexible loads are being integrated into power systems through power electronic converters. This imposes great challenges to the stability, scalability, reliability, security, and resiliency of future power systems. This section joins the forces of the communities of control/systems theory, power electronics, and power systems to address various emerging issues of power-electronics-enabled autonomous power systems, paving the way for large-scale deployment of DERs and flexible loads.

Di Crescenzo, Giovanni, Khodjaeva, Matluba, Kahrobaei, Delaram, Shpilrain, Vladimir.  2017.  Practical and Secure Outsourcing of Discrete Log Group Exponentiation to a Single Malicious Server. Proceedings of the 2017 on Cloud Computing Security Workshop. :17–28.

Group exponentiation is an important operation used in many public-key cryptosystems and, more generally, cryptographic protocols. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that this operation is outsourced from a computationally weaker client to a computationally stronger server, possibly implemented in a cloud-based architecture. While preliminary solutions to this problem considered mostly honest servers, or multiple separated servers, some of which honest, solving this problem in the case of a single (logical), possibly malicious, server, has remained open since a formal cryptographic model was introduced in [20]. Several later attempts either failed to achieve privacy or only bounded by a constant the (security) probability that a cheating server convinces a client of an incorrect result. In this paper we solve this problem for a large class of cyclic groups, thus making our solutions applicable to many cryptosystems in the literature that are based on the hardness of the discrete logarithm problem or on related assumptions. Our main protocol satisfies natural correctness, security, privacy and efficiency requirements, where the security probability is exponentially small. In our main protocol, with very limited offline computation and server computation, the client can delegate an exponentiation to an exponent of the same length as a group element by performing an exponentiation to an exponent of short length (i.e., the length of a statistical parameter). We also show an extension protocol that further reduces client computation by a constant factor, while increasing offline computation and server computation by about the same factor.