Biblio
In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.
Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node's interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.
The large amounts of synchrophasor data obtained by Phasor Measurement Units (PMUs) provide dynamic visibility into power systems. Extracting reliable information from the data can enhance power system situational awareness. The data quality often suffers from data losses, bad data, and cyber data attacks. Data privacy is also an increasing concern. In this paper, we discuss our recently proposed framework of data recovery, error correction, data privacy enhancement, and event identification methods by exploiting the intrinsic low-dimensional structures in the high-dimensional spatial-temporal blocks of PMU data. Our data-driven approaches are computationally efficient with provable analytical guarantees. The data recovery method can recover the ground-truth data even if simultaneous and consecutive data losses and errors happen across all PMU channels for some time. We can identify PMU channels that are under false data injection attacks by locating abnormal dynamics in the data. The data recovery method for the operator can extract the information accurately by collectively processing the privacy-preserving data from many PMUs. A cyber intruder with access to partial measurements cannot recover the data correctly even using the same approach. A real-time event identification method is also proposed, based on the new idea of characterizing an event by the low-dimensional subspace spanned by the dominant singular vectors of the data matrix.
Cybersecurity in control systems has been actively discussed in recent years. In particular, networked control systems (NCSs) over the Internet are exposed to various types of cyberattacks such as false data injection attacks. This paper proposes a detection and mitigation method of the false data injection attacks in interactive NCSs, i.e., bilateral teleoperation systems. A bilateral teleoperation system exchanges position and force information through the Internet between the master and slave robots. The proposed method utilizes two redundant communication channels for both the master-to-slave and slave-to-master paths. The attacks are detected by a tamper detection observer (TDO) on each of the master and slave sides. The TDO compares the position responses of actual robots and robot models. A path selector on each side chooses the appropriate position and force responses from the responses received through the two communication channels, based on the outputs of the TDO. The proposed method is validated by simulations with attack models.
As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.
Quickest detection of false data injection attacks (FDIAs) in dynamic smart grids is considered in this paper. The unknown time-varying state variables of the smart grid and the FDIAs impose a significant challenge for designing a computationally efficient detector. To address this challenge, we propose new Cumulative-Sum-type algorithms with computational complex scaling linearly with the number of meters. Moreover, for any constraint on the expected false alarm period, a lower bound on the threshold employed in the proposed algorithm is provided. For any given threshold employed in the proposed algorithm, an upper bound on the worstcase expected detection delay is also derived. The proposed algorithm is numerically investigated in the context of an IEEE standard power system under FDIAs, and is shown to outperform some representative algorithm in the test case.
In the present paper, the problem of networked control system (NCS) cyber security is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The proposed results are about the so-called false data injection attacks and show how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.