Visible to the public Biblio

Found 331 results

Filters: Keyword is Organizations  [Clear All Filters]
2022-08-12
Choi, Heeyoung, Young, Kang Ju.  2021.  Practical Approach of Security Enhancement Method based on the Protection Motivation Theory. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :96—97.

In order to strengthen information security, practical solutions to reduce information security stress are needed because the motivation of the members of the organization who use it is needed to work properly. Therefore, this study attempts to suggest the key factors that can enhance security while reducing the information security stress of organization members. To this end, based on the theory of protection motivation, trust and security stress in information security policies are set as mediating factors to explain changes in security reinforcement behavior, and risk, efficacy, and reaction costs of cyberattacks are considered as prerequisites. Our study suggests a solution to the security reinforcement problem by analyzing the factors that influence the behavior of organization members that can raise the protection motivation of the organization members.

2022-07-13
Koutsouris, Nikolaos, Vassilakis, Costas, Kolokotronis, Nicholas.  2021.  Cyber-Security Training Evaluation Metrics. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :192—197.
Cyber-security training has evolved into an imperative need, aiming to provide cyber-security professionals with the knowledge and skills required to confront cyber-attacks that are increasing in number and sophistication. Training activities are typically associated with evaluation means, aimed to assess the extent to which the trainee has acquired the knowledge and skills whose development is targeted by the training programme, while cyber-security awareness and skill level evaluation means may be used to support additional security-related aspects of organizations. In this paper, we review trainee performance assessment metrics in cyber-security training, aiming to assist designers of cyber-security training activities to identify the most prominent trainee performance assessment means for their training programmes, while additional research directions involving cyber-security training evaluation metrics are also identified.
Diakoumakos, Jason, Chaskos, Evangelos, Kolokotronis, Nicholas, Lepouras, George.  2021.  Cyber-Range Federation and Cyber-Security Games: A Gamification Scoring Model. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :186—191.
Professional training is essential for organizations to successfully defend their assets against cyber-attacks. Successful detection and prevention of security incidents demands that personnel is not just aware about the potential threats, but its security expertise goes far beyond the necessary background knowledge. To fill-in the gap for competent security professionals, platforms offering realistic training environments and scenarios are designed that are referred to as cyber-ranges. Multiple cyber-ranges listed under a common platform can simulate more complex environments, referred as cyber-range federations. Security education approaches often implement gamification mechanics to increase trainees’ engagement and maximize the outcome of the training process. Scoring is an integral part of a gamification scheme, allowing both the trainee and the trainer to monitor the former’s performance and progress. In this article, a novel scoring model is presented that is designed to be agnostic with respect to the source of information: either a CR or a variety of different CRs being part of a federated environment.
2022-07-12
Patel, Mansi, Prabhu, S Raja, Agrawal, Animesh Kumar.  2021.  Network Traffic Analysis for Real-Time Detection of Cyber Attacks. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :642—646.
Preventing the cyberattacks has been a concern for any organization. In this research, the authors propose a novel method to detect cyberattacks by monitoring and analyzing the network traffic. It was observed that the various log files that are created in the server does not contain all the relevant traces to detect a cyberattack. Hence, the HTTP traffic to the web server was analyzed to detect any potential cyberattacks. To validate the research, a web server was simulated using the Opensource Damn Vulnerable Web Application (DVWA) and the cyberattacks were simulated as per the OWASP standards. A python program was scripted that captured the network traffic to the DVWA server. This traffic was analyzed in real-time by reading the various HTTP parameters viz., URLs, Get / Post methods and the dependencies. The results were found to be encouraging as all the simulated attacks in real-time could be successfully detected. This work can be used as a template by various organizations to prevent any insider threat by monitoring the internal HTTP traffic.
Kanca, Ali Melih, Sagiroglu, Seref.  2021.  Sharing Cyber Threat Intelligence and Collaboration. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :167—172.
With the developing technology, cyber threats are developing rapidly, and the motivations and targets of cyber attackers are changing. In order to combat these threats, cyber threat information that provides information about the threats and the characteristics of the attackers is needed. In addition, it is of great importance to cooperate with other stakeholders and share experiences so that more information about threat information can be obtained and necessary measures can be taken quickly. In this context, in this study, it is stated that the establishment of a cooperation mechanism in which cyber threat information is shared will contribute to the cyber security capacity of organizations. And using the Zack Information Gap analysis, the deficiency of organizations in sharing threat information were determined and suggestions were presented. In addition, there are cooperation mechanisms in the USA and the EU where cyber threat information is shared, and it has been evaluated that it would be beneficial to establish a similar mechanism in our country. Thus, it is evaluated that advanced or unpredictable cyber threats can be detected, the cyber security capacities of all stakeholders will increase and a safer cyber ecosystem will be created. In addition, it is possible to collect, store, distribute and share information about the analysis of cyber incidents and malware analysis, to improve existing cyber security products or to encourage new product development, by carrying out joint R&D studies among the stakeholders to ensure that domestic and national cyber security products can be developed. It is predicted that new analysis methods can be developed by using technologies such as artificial intelligence and machine learning.
Farion-Melnyk, Antonina, Rozheliuk, Viktoria, Slipchenko, Tetiana, Banakh, Serhiy, Farion, Mykhailyna, Bilan, Oksana.  2021.  Ransomware Attacks: Risks, Protection and Prevention Measures. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :473—478.
This article is about the current situation of cybercrime activity in the world. Research was planned to seek the possible protection measures taking into account the last events which might create an appropriate background for increasing of ransomware damages and cybercrime attacks. Nowadays, the most spread types of cybercrimes are fishing, theft of personal or payment data, cryptojacking, cyberespionage and ransomware. The last one is the most dangerous. It has ability to spread quickly and causes damages and sufficient financial loses. The major problem of this ransomware type is unpredictability of its behavior. It could be overcome only after the defined ransom was paid. This conditions created an appropriate background for the activation of cyber criminals’ activity even the organization of cyber gangs – professional, well-organized and well-prepared (tactical) group. So, researches conducted in this field have theoretical and practical value in the scientific sphere of research.
Tekiner, Ege, Acar, Abbas, Uluagac, A. Selcuk, Kirda, Engin, Selcuk, Ali Aydin.  2021.  In-Browser Cryptomining for Good: An Untold Story. 2021 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). :20—29.
In-browser cryptomining uses the computational power of a website's visitors to mine cryptocurrency, i.e., to create new coins. With the rise of ready-to-use mining scripts distributed by service providers (e.g., Coinhive), it has become trivial to turn a website into a cryptominer by copying and pasting the mining script. Both legitimate webpage owners who want to raise an extra revenue under users' explicit consent and malicious actors who wish to exploit the computational power of the users' computers without their consent have started to utilize this emerging paradigm of cryptocurrency operations. In-browser cryptomining, though mostly abused by malicious actors in practice, is indeed a promising funding model that can be utilized by website owners, publishers, or non-profit organizations for legitimate business purposes, such as to collect revenue or donations for humanitarian projects, inter alia. However, our analysis in this paper shows that in practice, regardless of their being legitimate or not, all in-browser mining scripts are treated the same as malicious cryptomining samples (aka cryptojacking) and blacklisted by browser extensions or antivirus programs. Indeed, there is a need for a better understanding of the in-browser cryptomining ecosystem. Hence, in this paper, we present an in-depth empirical analysis of in-browser cryptomining processes, focusing on the samples explicitly asking for user consent, which we call permissioned cryptomining. To the best of our knowledge, this is the first study focusing on the permissioned cryptomining samples. For this, we created a dataset of 6269 unique web sites containing cryptomining scripts in their source codes to characterize the in-browser cryptomining ecosystem by differentiating permissioned and permissionless cryptomining samples. We believe that (1) this paper is the first attempt showing that permissioned in-browser cryptomining could be a legitimate and viable monetization tool if implemented responsibly and without interrupting the user, and (2) this paper will catalyze the widespread adoption of legitimate crvptominina with user consent and awareness.
2022-06-14
Qureshi, Hifza, Sagar, Anil Kumar, Astya, Rani, Shrivastava, Gulshan.  2021.  Big Data Analytics for Smart Education. 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA). :650–658.
The existing education system, which incorporates school assessments, has some flaws. Conventional teaching methods give students no immediate feedback, also make teachers to spend hours grading repetitive assignments, and aren't very constructive in showing students how to improve in their academics, and also fail to take advantage of digital opportunities that can improve learning outcomes. In addition, since a single teacher has to manage a class of students, it gets difficult to focus on each and every student in the class. Furthermore, with the help of a management system for better learning, educational organizations can now implement administrative analytics and execute new business intelligence using big data. This data visualization aids in the evaluation of teaching, management, and study success metrics. In this paper, there is put forward a discussion on how Data Mining and Data Analytics can help make the experience of learning and teaching both, easier and accountable. There will also be discussion on how the education organization has undergone numerous challenges in terms of effective and efficient teachings, student-performance. In addition development, and inadequate data storage, processing, and analysis will also be discussed. The research implements Python programming language on big education data. In addition, the research adopted an exploratory research design to identify the complexities and requirements of big data in the education field.
2022-06-13
Syed, Saba, Anu, Vaibhav.  2021.  Digital Evidence Data Collection: Cloud Challenges. 2021 IEEE International Conference on Big Data (Big Data). :6032–6034.
Cloud computing has become ubiquitous in the modern world and has offered a number of promising and transformative technological opportunities. However, organizations that use cloud platforms are also concerned about cloud security and new threats that arise due to cloud adoption. Digital forensic investigations (DFI) are undertaken when a security incident (i.e., successful attack) has been identified. Forensics data collection is an integral part of DFIs. This paper presents results from a survey of existing literature on challenges related to forensics data collection in cloud. A taxonomy of major challenges was developed to help organizations understand and thus better prepare for forensics data collection.
2022-06-10
Poon, Lex, Farshidi, Siamak, Li, Na, Zhao, Zhiming.  2021.  Unsupervised Anomaly Detection in Data Quality Control. 2021 IEEE International Conference on Big Data (Big Data). :2327–2336.
Data is one of the most valuable assets of an organization and has a tremendous impact on its long-term success and decision-making processes. Typically, organizational data error and outlier detection processes perform manually and reactively, making them time-consuming and prone to human errors. Additionally, rich data types, unlabeled data, and increased volume have made such data more complex. Accordingly, an automated anomaly detection approach is required to improve data management and quality control processes. This study introduces an unsupervised anomaly detection approach based on models comparison, consensus learning, and a combination of rules of thumb with iterative hyper-parameter tuning to increase data quality. Furthermore, a domain expert is considered a human in the loop to evaluate and check the data quality and to judge the output of the unsupervised model. An experiment has been conducted to assess the proposed approach in the context of a case study. The experiment results confirm that the proposed approach can improve the quality of organizational data and facilitate anomaly detection processes.
2022-06-09
Chandrakar, Ila, Hulipalled, Vishwanath R.  2021.  Privacy Preserving Big Data mining using Pseudonymization and Homomorphic Encryption. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Today’s data is so huge so it’s referred to as “Big data.” Such data now exceeds petabytes, and hence businesses have begun to store it in the cloud. Because the cloud is a third party, data must be secured before being uploaded to the cloud in such a way that cloud mining may be performed on protected data, as desired by the organization. Homomorphic encryption permits mining and analysis of encrypted data, hence it is used in the proposed work to encrypt original data on the data owner’s site. Since, homomorphic encryption is a complicated encryption, it takes a long time to encrypt, causing performance to suffer. So, in this paper, we used Hadoop to implement homomorphic encryption, which splits data across nodes in a Hadoop cluster to execute parallel algorithm and provides greater privacy and performance than previous approaches. It also enables for data mining in encrypted form, ensuring that the cloud never sees the original data during mining.
Sujatha, G., Raj, Jeberson Retna.  2021.  Digital Data Identification for Deduplication Process using Cryptographic Hashing Techniques. 2021 International Conference on Intelligent Technologies (CONIT). :1–4.
The cloud storage system is a very big boon for the organizations and individuals who are all in the need of storage space to accommodate huge volume of digital data. The cloud storage space can handle various types of digital data like text, image, video and audio. Since the storage space can be shared among different users, it is possible to have duplicate copies of data in the storage space. An efficient mechanism is required to identify the digital data uniquely in order to check the duplicity. There are various ways by which the digital data can be identified. One among such technique is hash-based identification. Using cryptographic hashing algorithms, every data can be uniquely identified. The unique property of hashing algorithm helps to identify the data uniquely. In this research work, we are going to discuss the advantage of using cryptographic hashing algorithm for digital data identification and the comparison of various hashing algorithms.
Deshmukh, Monika S., Bhaladhare, Pavan Ravikesh.  2021.  Intrusion Detection System (DBN-IDS) for IoT using Optimization Enabled Deep Belief Neural Network. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1–4.
In the era of Internet of Things (IoT), the connection links are established from devices easily, which is vulnerable to insecure attacks from intruders, hence intrusion detection system in IoT is the need of an hour. One of the important thing for any organization is securing the confidential information and data from outside attacks as well as unauthorized access. There are many attempts made by the researchers to develop the strong intrusion detection system having high accuracy. These systems suffer from many disadvantages like unacceptable accuracy rates including high False Positive Rate (FPR) and high False Negative Rate (FNR), more execution time and failure rate. More of these system models are developed by using traditional machine learning techniques, which have performance limitations in terms of accuracy and timeliness both. These limitations can be overcome by using the deep learning techniques. Deep learning techniques have the capability to generate highly accurate results and are fault tolerant. Here, the intrusion detection model for IoT is designed by using the Taylor-Spider Monkey optimization (Taylor-SMO) which will be developed to train the Deep belief neural network (DBN) towards achieving an accurate intrusion detection model. The deep learning accuracy gets increased with increasing number of training data samples and testing data samples. The optimization based algorithm for training DBN helps to reduce the FPR and FNR in intrusion detection. The system will be implemented by using the NSL KDD dataset. Also, this model will be trained by using the samples from this dataset, before which feature extraction will be applied and only relevant set of attributes will be selected for model development. This approach can lead to better and satisfactory results in intrusion detection.
Pour, Morteza Safaei, Watson, Dylan, Bou-Harb, Elias.  2021.  Sanitizing the IoT Cyber Security Posture: An Operational CTI Feed Backed up by Internet Measurements. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :497–506.

The Internet-of-Things (IoT) paradigm at large continues to be compromised, hindering the privacy, dependability, security, and safety of our nations. While the operational security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue to develop capabilities for monitoring cyberspace, tools which are IoT-centric remain at its infancy. To this end, we address this gap by innovating an actionable Cyber Threat Intelligence (CTI) feed related to Internet-scale infected IoT devices. The feed analyzes, in near real-time, 3.6TB of daily streaming passive measurements ( ≈ 1M pps) by applying a custom-developed learning methodology to distinguish between compromised IoT devices and non-IoT nodes, in addition to labeling the type and vendor. The feed is augmented with third party information to provide contextual information. We report on the operation, analysis, and shortcomings of the feed executed during an initial deployment period. We make the CTI feed available for ingestion through a public, authenticated API and a front-end platform.

2022-06-07
He, Weiyu, Wu, Xu, Wu, Jingchen, Xie, Xiaqing, Qiu, Lirong, Sun, Lijuan.  2021.  Insider Threat Detection Based on User Historical Behavior and Attention Mechanism. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :564–569.
Insider threat makes enterprises or organizations suffer from the loss of property and the negative influence of reputation. User behavior analysis is the mainstream method of insider threat detection, but due to the lack of fine-grained detection and the inability to effectively capture the behavior patterns of individual users, the accuracy and precision of detection are insufficient. To solve this problem, this paper designs an insider threat detection method based on user historical behavior and attention mechanism, including using Long Short Term Memory (LSTM) to extract user behavior sequence information, using Attention-based on user history behavior (ABUHB) learns the differences between different user behaviors, uses Bidirectional-LSTM (Bi-LSTM) to learn the evolution of different user behavior patterns, and finally realizes fine-grained user abnormal behavior detection. To evaluate the effectiveness of this method, experiments are conducted on the CMU-CERT Insider Threat Dataset. The experimental results show that the effectiveness of this method is 3.1% to 6.3% higher than that of other comparative model methods, and it can detect insider threats in different user behaviors with fine granularity.
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun.  2021.  Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
2022-05-19
Zhang, Xiaoyu, Fujiwara, Takanori, Chandrasegaran, Senthil, Brundage, Michael P., Sexton, Thurston, Dima, Alden, Ma, Kwan-Liu.  2021.  A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data. 2021 IEEE 14th Pacific Visualization Symposium (PacificVis). :196–205.
Analysis of large, high-dimensional, and heterogeneous datasets is challenging as no one technique is suitable for visualizing and clustering such data in order to make sense of the underlying information. For instance, heterogeneous logs detailing machine repair and maintenance in an organization often need to be analyzed to diagnose errors and identify abnormal patterns, formalize root-cause analyses, and plan preventive maintenance. Such real-world datasets are also beset by issues such as inconsistent and/or missing entries. To conduct an effective diagnosis, it is important to extract and understand patterns from the data with support from analytic algorithms (e.g., finding that certain kinds of machine complaints occur more in the summer) while involving the human-in-the-loop. To address these challenges, we adopt existing techniques for dimensionality reduction (DR) and clustering of numerical, categorical, and text data dimensions, and introduce a visual analytics approach that uses multiple coordinated views to connect DR + clustering results across each kind of the data dimension stated. To help analysts label the clusters, each clustering view is supplemented with techniques and visualizations that contrast a cluster of interest with the rest of the dataset. Our approach assists analysts to make sense of machine maintenance logs and their errors. Then the gained insights help them carry out preventive maintenance. We illustrate and evaluate our approach through use cases and expert studies respectively, and discuss generalization of the approach to other heterogeneous data.
J, Goutham Kumar, S, Gowri, Rajendran, Surendran, Vimali, J.S., Jabez, J., Srininvasulu, Senduru.  2021.  Identification of Cyber Threats and Parsing of Data. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :556–564.
One of the significant difficulties in network safety is the arrangement of a mechanized and viable digital danger's location strategy. This paper presents an AI procedure for digital dangers recognition, in light of fake neural organizations. The proposed procedure changes large number of gathered security occasions over to singular occasion profiles and utilize a profound learning-based discovery strategy for upgraded digital danger identification. This research work develops an AI-SIEM framework dependent on a blend of occasion profiling for information preprocessing and distinctive counterfeit neural organization techniques by including FCNN, CNN, and LSTM. The framework centers around separating between obvious positive and bogus positive cautions, consequently causing security examiners to quickly react to digital dangers. All trials in this investigation are performed by creators utilizing two benchmark datasets (NSLKDD and CICIDS2017) and two datasets gathered in reality. To assess the presentation correlation with existing techniques, tests are carried out by utilizing the five ordinary AI strategies (SVM, k-NN, RF, NB, and DT). Therefore, the exploratory aftereffects of this examination guarantee that our proposed techniques are fit for being utilized as learning-based models for network interruption discovery and show that despite the fact that it is utilized in reality, the exhibition beats the traditional AI strategies.
Singh, Malvika, Mehtre, BM, Sangeetha, S.  2021.  User Behaviour based Insider Threat Detection in Critical Infrastructures. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :489–494.
Cyber security is an important concern in critical infrastructures such as banking and financial organizations, where a number of malicious insiders are involved. These insiders may be existing employees / users present within the organization and causing harm by performing any malicious activity and are commonly known as insider threats. Existing insider threat detection (ITD) methods are based on statistical analysis, machine and deep learning approaches. They monitor and detect malicious user activity based on pre-built rules which fails to detect unforeseen threats. Also, some of these methods require explicit feature engineering which results in high false positives. Apart from this, some methods choose relatively insufficient features and are computationally expensive which affects the classifier's accuracy. Hence, in this paper, a user behaviour based ITD method is presented to overcome the above limitations. It is a conceptually simple and flexible approach based on augmented decision making and anomaly detection. It consists of bi-directional long short term memory (bi-LSTM) for efficient feature extraction. For the purpose of classifying users as "normal" or "malicious", a binary class support vector machine (SVM) is used. CMU-CERT v4.2 dataset is used for testing the proposed method. The performance is evaluated using the following parameters: Accuracy, Precision, Recall, F- Score and AUC-ROC. Test results show that the proposed method outperforms the existing methods.
2022-05-09
Zobaed, Sakib M, Salehi, Mohsen Amini, Buyya, Rajkumar.  2021.  SAED: Edge-Based Intelligence for Privacy-Preserving Enterprise Search on the Cloud. 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
Cloud-based enterprise search services (e.g., AWS Kendra) have been entrancing big data owners by offering convenient and real-time search solutions to them. However, the problem is that individuals and organizations possessing confidential big data are hesitant to embrace such services due to valid data privacy concerns. In addition, to offer an intelligent search, these services access the user’s search history that further jeopardizes his/her privacy. To overcome the privacy problem, the main idea of this research is to separate the intelligence aspect of the search from its pattern matching aspect. According to this idea, the search intelligence is provided by an on-premises edge tier and the shared cloud tier only serves as an exhaustive pattern matching search utility. We propose Smartness at Edge (SAED mechanism that offers intelligence in the form of semantic and personalized search at the edge tier while maintaining privacy of the search on the cloud tier. At the edge tier, SAED uses a knowledge-based lexical database to expand the query and cover its semantics. SAED personalizes the search via an RNN model that can learn the user’s interest. A word embedding model is used to retrieve documents based on their semantic relevance to the search query. SAED is generic and can be plugged into existing enterprise search systems and enable them to offer intelligent and privacy-preserving search without enforcing any change on them. Evaluation results on two enterprise search systems under real settings and verified by human users demonstrate that SAED can improve the relevancy of the retrieved results by on average ≈24% for plain-text and ≈75% for encrypted generic datasets.
2022-05-06
Nayak, Lipsa, Jayalakshmi, V..  2021.  A Study of Securing Healthcare Big Data using DNA Encoding based ECC. 2021 6th International Conference on Inventive Computation Technologies (ICICT). :348—352.
IT world is migrating towards utilizing cloud computing as an essential data storing and exchanging platform. With the amelioration of technology, a colossal amount of data is generating with time. Cloud computing provides an enormous data storage capacity with the flexibility of accessing it without the time and place restrictions with virtualized resources. Healthcare industries spawn intense amounts of data from various medical instruments and digital records of patients. To access data remotely from any geographical location, the healthcare industry is moving towards cloud computing. EHR and PHR are patient's digital records, which include sensitive information of patients. Apart from all the proficient service provided by cloud computing, security is a primary concern for various organizations. To address the security issue, several cryptographic techniques implemented by researchers worldwide. In this paper, a vigorous cryptographic method discussed which is implemented by combining DNA cryptography and Elliptic Curve Cryptography to protect sensitive data in the cloud.
2022-04-26
Wang, Hongji, Yao, Gang, Wang, Beizhan.  2021.  A Quantum Ring Signature Scheme Based on the Quantum Finite Automata Signature Scheme. 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :135–139.

In quantum cryptography research area, quantum digital signature is an important research field. To provide a better privacy for users in constructing quantum digital signature, the stronger anonymity of quantum digital signatures is required. Quantum ring signature scheme focuses on anonymity in certain scenarios. Using quantum ring signature scheme, the quantum message signer hides his identity into a group. At the same time, there is no need for any centralized organization when the user uses the quantum ring signature scheme. The group used to hide the signer identity can be immediately selected by the signer himself, and no collaboration between users.Since the quantum finite automaton signature scheme is very efficient quantum digital signature scheme, based on it, we propose a new quantum ring signature scheme. We also showed that the new scheme we proposed is of feasibility, correctness, anonymity, and unforgeability. And furthermore, the new scheme can be implemented only by logical operations, so it is easy to implement.

2022-04-18
Rafaiani, Giulia, Battaglioni, Massimo, Baldi, Marco, Chiaraluce, Franco, Libertini, Giovanni, Spalazzi, Luca, Cancellieri, Giovanni.  2021.  A Functional Approach to Cyber Risk Assessment. 2021 AEIT International Annual Conference (AEIT). :1–6.
Information security has become a crucial issue not only from the technical standpoint, but also from the managerial standpoint. The necessity for organizations to understand and manage cyber risk has led to the rise of a plethora of risk assessment methods and tools. These approaches are often difficult to interpret and complex to manage for organizations. In this paper, we propose a simple and quantitative method for the estimation of the likelihood of occurrence of a cyber incident. Our approach uses a generalized logistic function and a cumulative geometric distribution to combine the maturity and the complexity of the technical infrastructure of an organization with its attractiveness towards cyber criminals.
Shi, Pinyi, Song, Yongwook, Fei, Zongming, Griffioen, James.  2021.  Checking Network Security Policy Violations via Natural Language Questions. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–9.
Network security policies provide high-level directives regarding acceptable and unacceptable use of the network. Organizations specify these high-level directives in policy documents written using human-readable natural language. The challenge is to convert these natural language policies to the network configurations/specifications needed to enforce the policy. Network administrators, who are responsible for enforcing the policies, typically translate the policies manually, which is a challenging and error-prone process. As a result, network operators (as well as the policy authors) often want to verify that network policies are being correctly enforced. In this paper, we propose Network Policy Conversation Engine (NPCE), a system designed to help network operators (or policy writers) interact with the network using natural language (similar to the language used in the network policy statements themselves) to understand whether policies are being correctly enforced. The system leverages emerging big data collection and analysis techniques to record flow and packet level activity throughout the network that can be used to answer users policy questions. The system also takes advantage of recent advances in Natural Language Processing (NLP) to translate natural language policy questions into the corresponding network queries. To evaluate our system, we demonstrate a wide range of policy questions – inspired by actual networks policies posted on university websites – that can be asked of the system to determine if a policy violation has occurred.
Shammari, Ayla Al, Maiti, Richard Rabin, Hammer, Bennet.  2021.  Organizational Security Policy and Management during Covid-19. SoutheastCon 2021. :1–4.
Protection of an organization's assets and information technology infrastructure is always crucial to any business. Securing and protecting businesses from cybersecurity threats became very challenging during the Covid-19 Pandemic. Organizations suddenly shifted towards remote work to maintain continuity and protecting against new cyber threats became a big concern for most business owners. This research looks into the following areas (i) outlining the shift from In-person to online work risks (ii) determine the cyber-attack type based on the list of 10 most prominent cybersecurity threats during the Covid-19 Pandemic (iii) and design a security policy to securing business continuity.