Visible to the public Biblio

Found 178 results

Filters: Keyword is Ciphers  [Clear All Filters]
2023-08-17
Hariharasudan, V, Quraishi, Suhail Javed.  2022.  A Review on Blockchain Based Identity Management System. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :735—740.
The expansion of the internet has resulted in huge growth in every industry. It does, however, have a substantial impact on the downsides. Because of the internet's rapid growth, personally identifiable information (PII) should be kept secure in the coming years. Obtaining someone's personal information is rather simple nowadays. There are some established methods for keeping our personal information private. Further, it is essential because we must provide our identity cards to someone for every verification step. In this paper, we will look at some of the attempted methods for protecting our identities. We will highlight the research gaps and potential future enhancements in the research for more enhanced security based on our literature review.
2023-08-11
Rojali, Rasjid, Zulfany Erlisa, Matthew, Justin Cliff.  2022.  Implementation of Rail Fence Cipher and Myszkowski Algorithms and Secure Hash Algorithm (SHA-256) for Security and Detecting Digital Image Originality. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :207—212.
The use of digital images is increasingly widespread currently. There is a need for security in digital photos. Cryptography is a technique that can be applied to secure data. In addition to safety, data integrity also needs to be considered to anticipate the image being manipulated. The hash function is a technique that can be used to determine data authentication. In this study, the Rail Fence Cipher and Myszkowski algorithms were used for the encryption and decryption of digital images, as the Secure Hash Algorithm (SHA-256) algorithm. Rail Fence Cipher Algorithm is a transposition algorithm that is quite simple but still vulnerable. It is combined with the Myszkowski Algorithm, which has a high level of complexity with a simple key. Secure Hash Algorithm (SHA-256) is a hash function that accepts an input limit of fewer than 2∧64 bits and produces a fixed hash value of 256 bits. The tested images vary based on image resolution and can be encrypted and decrypted well, with an average MSE value of 4171.16 and an average PSNR value of 11.96 dB. The hash value created is also unique. Keywords—Cryptography, Hash Function, Rail Fence Cipher, Myszkowski, SHA-256, Digital image.
2023-07-14
Dib, S., Amzert, A. K., Grimes, M., Benchiheb, A., Benmeddour, F..  2022.  Elliptic Curve Cryptography for Medical Image Security. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :1782–1787.
To contribute to medical data security, we propose the application of a modified algorithm on elliptical curves (ECC), initially proposed for text encryption. We implement this algorithm by eliminating the sender-receiver lookup table and grouping the pixel values into pairs to form points on a predefined elliptical curve. Simulation results show that the proposed algorithm offers the best compromise between the quality and the speed of cipher / decipher, especially for large images. A comparative study between ECC and AlGamel showed that the proposed algorithm offers better performance and its application, on medical images, is promising. Medical images contain many pieces of information and are often large. If the cryptographic operation is performed on every single pixel it will take more time. So, working on groups of pixels will be strongly recommended to save time and space.
ISSN: 2474-0446
Ratheesh, T K, Paul, Varghese.  2022.  A Public Key Cryptography based Mechanism for the Secure Transmission of RGB Images using Elliptic Curve based Hill Cipher and Magic Square Concept. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1–6.
The use of image data in multimedia communication based applications like military applications and medical images security applications are increasing every day and the secrecy of the image data is extremely important for such applications. A number of methods and techniques for securely transmitting images are proposed in the literature based on image encryption and steganography approaches. A novel mechanism for transmitting color images securely is proposed in this paper mainly based on public key cryptography mechanism also by combining the advantage of simplicity of symmetric schemes. The technique combines the strengths of Elliptic Curve Cryptography and the classical symmetric cryptographic mechanism called Hill Cipher encryption method. The technique also includes the concept of Magic Square for jumbling the pixels yielding maximum diffusion in the image pixels. In the performance evaluation, the proposed method proved that the new system works pretty well. The method is proved to be effective in maintaining the confidentiality of the image in transit and also for resisting security attacks.
2023-07-12
B C, Manoj Kumar, R J, Anil Kumar, D, Shashidhara, M, Prem Singh.  2022.  Data Encryption and Decryption Using DNA and Embedded Technology. 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). :1—5.
Securing communication and information is known as cryptography. To convert messages from plain text to cipher text and the other way around. It is the process of protecting the data and sending it to the right audience so they can understand and process it. Hence, unauthorized access is avoided. This work suggests leveraging DNA technology for encrypt and decrypt the data. The main aim of utilizing the AES in this stage will transform ASCII code to hexadecimal to binary coded form and generate DNA. The message is encrypted with a random key. Shared key used for encrypt and decrypt the data. The encrypted data will be disguised as an image using steganography. To protect our data from hijackers, assailants, and muggers, it is frequently employed in institutions, banking, etc.
Ravi, Renjith V., Goyal, S. B., Islam, Sardar M N.  2022.  Colour Image Encryption Using Chaotic Trigonometric Map and DNA Coding. 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). :172—176.
The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA's outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
Hadi, Ahmed Hassan, Abdulshaheed, Sameer Hameed, Wadi, Salim Muhsen.  2022.  Safeguard Algorithm by Conventional Security with DNA Cryptography Method. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :195—201.
Encryption defined as change information process (which called plaintext) into an unreadable secret format (which called ciphertext). This ciphertext could not be easily understood by somebody except authorized parson. Decryption is the process to converting ciphertext back into plaintext. Deoxyribonucleic Acid (DNA) based information ciphering techniques recently used in large number of encryption algorithms. DNA used as data carrier and the modern biological technology is used as implementation tool. New encryption algorithm based on DNA is proposed in this paper. The suggested approach consists of three steps (conventional, stream cipher and DNA) to get high security levels. The character was replaced by shifting depend character location in conventional step, convert to ASCII and AddRoundKey was used in stream cipher step. The result from second step converted to DNA then applying AddRoundKey with DNA key. The evaluation performance results proved that the proposed algorithm cipher the important data with high security levels.
2023-04-14
Lin, Chen, Wang, Yi.  2022.  Implementation of Cache Timing Attack Based on Present Algorithm. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :32–35.
Traditional side-channel attacks have shortcomings such as low efficiency, extremely difficult collection and injection of fault information in real environments, and poor applicability of attacks. The cache timing attack proposed in recent years is a new type of side-channel attack method. This attack method uses the difference in the reading speed of the computer CPU cache to enable the attacker to obtain the confidential information during the execution of the algorithm. The attack efficiency is high, and the cost is relatively low. little. Present algorithm is a lightweight block cipher proposed in 2007. The algorithm has excellent hardware implementation and concise round function design. On this basis, scholars at home and abroad have carried out different side-channel attacks on it, such as differential attacks., multiple differential chain attacks, algebraic attacks, etc. At present, there is no published research on the Cache timing attack against the Present algorithm at home and abroad. In this paper, the output value of the S box in the first and second rounds of the encryption process is obtained through the combination of the Cache timing attack and the side-channel Trojan horse, and Combined with the key recovery algorithm, the master key of the algorithm is finally recovered.
Shaocheng, Wu, Hefang, Jiang, Sijian, Li, Tao, Liu.  2022.  Design of a chaotic sequence cipher algorithm. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :320–323.
To protect the security of video information use encryption technology to be effective means. In practical applications, the structural complexity and real-time characteristics of video information make the encryption effect of some commonly used algorithms have some shortcomings. According to the characteristics of video, to design practical encryption algorithm is necessary. This paper proposed a novel scheme of chaotic image encryption, which is based on scrambling and diffusion structure. Firstly, the breadth first search method is used to scramble the pixel position in the original image, and then the pseudo-random sequence generated by the time-varying bilateral chaotic symbol system is used to transform each pixel of the scrambled image ratio by ratio or encryption. In the simulation experiment and analysis, the performance of the encrypted image message entropy displays that the new chaotic image encryption scheme is effective.
2023-03-31
Sahoo, Subhaluxmi.  2022.  Cancelable Retinal Biometric method based on maximum bin computation and histogram bin encryption using modified Hill cipher. 2022 IEEE Delhi Section Conference (DELCON). :1–5.

Cancelable biometric is a new era of technology that deals with the protection of the privacy content of a person which itself helps in protecting the identity of a person. Here the biometric information instead of being stored directly on the authentication database is transformed into a non-invertible coded format that will be utilized for providing access. The conversion into an encrypted code requires the provision of an encryption key from the user side. Both invertible and non-invertible coding techniques are there but non-invertible one provides additional security to the user. In this paper, a non-invertible cancelable biometric method has been proposed where the biometric image information is canceled and encoded into a code using a user-provided encryption key. This code is generated from the image histogram after continuous bin updation to the maximal value and then it is encrypted by the Hill cipher. This code is stored on the database instead of biometric information. The technique is applied to a set of retinal information taken from the Indian Diabetic Retinopathy database.

2023-03-03
Mhaouch, Ayoub, Elhamzi, Wajdi, Abdelali, Abdessalem Ben, Atri, Mohamed.  2022.  Efficient Serial Architecture for PRESENT Block Cipher. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :45–49.
In recent years, the use of the Internet of Things (IoT) has increased rapidly in different areas. Due to many IoT applications, many limitations have emerged such as power consumption and limited resources. The security of connected devices is becoming more and more a primary need for the reliability of systems. Among other things, power consumption remains an essential constraint with a major impact on the quality of the encryption system. For these, several lightweight cryptography algorithms were proposed and developed. The PRESENT algorithm is one of the lightweight block cipher algorithms that has been proposed for a highly restrictive application. In this paper, we have proposed an efficient hardware serial architecture that uses 16 bits for data path encryption. It uses fewer FPGA resources and achieves higher throughput compared to other existing hardware applications.
Bharathi, C, Annapurna, K Y, Koppad, Deepali, Sudeendra Kumar, K.  2022.  An Analysis of Stream and Block Ciphers for Scan Encryption. 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). :1–5.
Scan-based test methodology is one of the most popular test techniques in VLSI circuits. This methodology increases the testability which in turn improves the fault coverage. For this purpose, the technique uses a chain of scan cells. This becomes a source of attack for an attacker who can observe / control the internal states and use the information for malicious purposes. Hence, security becomes the main concern in the Integrated Circuit (IC) domain since scan chains are the main reason for leakage of confidential information during testing phase. These leakages will help attackers in reverse engineering. Measures against such attacks have to be taken by encrypting the data which flows through the scan chains. Lightweight ciphers can be used for scan chain encryption. In this work, encryption of scan data is done for ISCAS-89 benchmarks and the performance and security properties are evaluated. Lightweight stream and block ciphers are used to perform scan encryption. A comparative analysis between the two techniques is performed in par with the functions related to design cost and security properties.
Ding, Shijun, Wang, An, Sun, Shaofei, Ding, Yaoling, Hou, Xintian, Han, Dong.  2022.  Correlation Power Analysis and Protected Implementation on Lightweight Block Cipher FESH. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :29–34.
With the development of the Internet of Things (IoT), the demand for lightweight cipher came into being. At the same time, the security of lightweight cipher has attracted more and more attention. FESH algorithm is a lightweight cipher proposed in 2019. Relevant studies have proved that it has strong ability to resist differential attack and linear attack, but its research on resisting side-channel attack is still blank. In this paper, we first introduce a correlation power analysis for FESH algorithm and prove its effectiveness by experiments. Then we propose a mask scheme for FESH algorithm, and prove the security of the mask. According to the experimental results, protected FESH only costs 8.6%, 72.3%, 16.7% of extra time, code and RAM.
Mishra, Ruby, Okade, Manish, Mahapatra, Kamalakanta.  2022.  FPGA based High Throughput Substitution Box Architectures for Lightweight Block Ciphers. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–7.
This paper explores high throughput architectures for the substitution modules, which are an integral component of encryption algorithms. The security algorithms chosen belong to the category of lightweight crypto-primitives suitable for pervasive computing. The focus of this work is on the implementation of encryption algorithms on hardware platforms to improve speed and facilitate optimization in the area and power consumption of the design. In this work, the architecture for the encryption algorithms' substitution box (S-box) is modified using switching circuits (i.e., MUX-based) along with a logic generator and included in the overall cipher design. The modified architectures exhibit high throughput and consume less energy in comparison to the state-of-the-art designs. The percentage increase in throughput or maximum frequency differs according to the chosen algorithms discussed elaborately in this paper. The evaluation of various metrics specific to the design are executed at RFID-specific frequency so that they can be deployed in an IoT environment. The designs are mainly simulated and compared on Nexys4 DDR FPGA platform, along with a few other FPGAs, to meet similar design and implementation environments for a fair comparison. The application of the proposed S-box modification is explored for the healthcare scenario with promising results.
Lam, To-Nguyen, Cao, Tran-Bao-Thuong, Le, Duc-Hung.  2022.  Implementation of Lightweight Cryptography Core PRESENT and DM-PRESENT on FPGA. 2022 International Conference on Advanced Technologies for Communications (ATC). :104–109.
In this paper, two lightweight cryptography methods were introduced and developed on hardware. The PRESENT lightweight block cipher, and the DM-PRESENT lightweight hash function were implemented on Intel FPGA. The PRESENT core with 64-bit block data and 80-bit data key consumes 2,945 logic element, 1,824 registers, and 273,408 memory bits. Meanwhile, the DM-PRESENT core with 64-bit input and 80-bit key consumes 2,336 logic element, 1,380 registers, and 273,408 memory bits. The PRESENT core with 128-bit key and DM-PRESENT based on this core were also implemented. These cores were simulated for functional verification and embedded in NIOS II for implementation possibility on hardware. They consumed less logic resources and power consumption compared with conventional cryptography methods.
Gunathilake, Nilupulee A., Al-Dubai, Ahmed, Buchanan, William J., Lo, Owen.  2022.  Electromagnetic Side-Channel Attack Resilience against PRESENT Lightweight Block Cipher. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :51–55.
Lightweight cryptography is a novel diversion from conventional cryptography that targets internet-of-things (IoT) platform due to resource constraints. In comparison, it offers smaller cryptographic primitives such as shorter key sizes, block sizes and lesser energy drainage. The main focus can be seen in algorithm developments in this emerging subject. Thus, verification is carried out based upon theoretical (mathematical) proofs mostly. Among the few available side-channel analysis studies found in literature, the highest percentage is taken by power attacks. PRESENT is a promising lightweight block cipher to be included in IoT devices in the near future. Thus, the emphasis of this paper is on lightweight cryptology, and our investigation shows unavailability of a correlation electromagnetic analysis (CEMA) of it. Hence, in an effort to fill in this research gap, we opted to investigate the capabilities of CEMA against the PRESENT algorithm. This work aims to determine the probability of secret key leakage with a minimum number of electromagnetic (EM) waveforms possible. The process initially started from a simple EM analysis (SEMA) and gradually enhanced up to a CEMA. This paper presents our methodology in attack modelling, current results that indicate a probability of leaking seven bytes of the key and upcoming plans for optimisation. In addition, introductions to lightweight cryptanalysis and theories of EMA are also included.
Jallouli, Ons, Chetto, Maryline, Assad, Safwan El.  2022.  Lightweight Stream Ciphers based on Chaos for Time and Energy Constrained IoT Applications. 2022 11th Mediterranean Conference on Embedded Computing (MECO). :1–5.
The design of efficient and secure cryptographic algorithms is a fundamental problem of cryptography. Due to the tight cost and constrained resources devices such as Radio-Frequency IDentification (RFID), wireless sensors, smart cards, health-care devices, lightweight cryptography has received a great deal of attention. Recent research mainly focused on designing optimized cryptographic algorithms which trade offs between security performance, time consuming, energy consumption and cost. In this paper, we present two chaotic stream ciphers based on chaos and we report the results of a comparative performance evaluation study. Compared to other crypto-systems of the literature, we demonstrate that our designed stream ciphers are suitable for practical secure applications of the Internet of Things (IoT) in a constrained resource environment.
Abdel-Halim, Islam Tharwat, Zayan, Hassan M..  2022.  Evaluating the Performance of Lightweight Block Ciphers for Resource-Constrained IoT Devices. 2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES). :39–44.
In the context of the Internet of Things (IoT), lightweight block ciphers are of vital importance. Due to the nature of the devices involved, traditional security solutions can add overhead and perhaps inhibit the application's objective due to resource limits. Lightweight cryptography is a novel suite of ciphers that aims to provide hardware-constrained devices with a high level of security while maintaining a low physical cost and high performance. In this paper, we are going to evaluate the performance of some of the recently proposed lightweight block ciphers (GIFT-COFB, Romulus, and TinyJAMBU) on the Arduino Due. We analyze data on each algorithm's performance using four metrics: average encryption and decryption execution time; throughput; power consumption; and memory utilization. Among our chosen ciphers, we find that TinyJAMBU and GIFT-COFB are excellent choices for resource-constrained IoT devices.
Yang, Gangqiang, Shi, Zhengyuan, Chen, Cheng, Xiong, Hailiang, Hu, Honggang, Wan, Zhiguo, Gai, Keke, Qiu, Meikang.  2022.  Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :19–20.
Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
2023-02-03
Yahia, Fatima F. M., Abushaala, Ahmed M..  2022.  Cryptography using Affine Hill Cipher Combining with Hybrid Edge Detection (Canny-LoG) and LSB for Data Hiding. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). :379–384.

In our time the rapid growth of internet and digital communications has been required to be protected from illegal users. It is important to secure the information transmitted between the sender and receiver over the communication channels such as the internet, since it is a public environment. Cryptography and Steganography are the most popular techniques used for sending data in secrete way. In this paper, we are proposing a new algorithm that combines both cryptography and steganography in order to increase the level of data security against attackers. In cryptography, we are using affine hill cipher method; while in steganography we are using Hybrid edge detection with LSB to hide the message. Our paper shows how we can use image edges to hide text message. Grayscale images are used for our experiments and a comparison is developed based on using different edge detection operators such as (canny-LoG ) and (Canny-Sobel). Their performance is measured using PSNR (Peak Signal to Noise ratio), MSE (Mean Squared Error) and EC (Embedding Capacity). The results indicate that, using hybrid edge detection (canny- LoG) with LSB for hiding data could provide high embedding capacity than using hybrid edge detection (canny- Sobel) with LSB. We could prove that hiding in the image edge area could preserve the imperceptibility of the Stego-image. This paper has also proved that the secrete message was extracted successfully without any distortion.

2023-01-13
Pehlivanoglu, Meltem Kurt, Demir, Mehmet Ali.  2022.  A Framework for Global Optimization of Linear Layers in SPN Block Ciphers. 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY). :13—18.
In this paper, we design a new framework that can utilize the current global optimization heuristics for solving the straight-line program (SLP) problem. We combine Paar1, Paar2, BP (Boyar-Peralta), BFI, RNBP (Random-Boyar Peralta), A1, A2, XZLBZ, and LWFWSW (backward search) state-of-the-art heuristics by taking the XOR (exclusive OR) count metrics into consideration. Thus, by using the proposed framework, optimal circuit implementations of a given diffusion (or linear) layer can be found with fewer XOR gate counts.
Zhao, Lutan, Li, Peinan, HOU, RUI, Huang, Michael C., Qian, Xuehai, Zhang, Lixin, Meng, Dan.  2022.  HyBP: Hybrid Isolation-Randomization Secure Branch Predictor. 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). :346—359.
Recently exposed vulnerabilities reveal the necessity to improve the security of branch predictors. Branch predictors record history about the execution of different processes, and such information from different processes are stored in the same structure and thus accessible to each other. This leaves the attackers with the opportunities for malicious training and malicious perception. Physical or logical isolation mechanisms such as using dedicated tables and flushing during context-switch can provide security but incur non-trivial costs in space and/or execution time. Randomization mechanisms incurs the performance cost in a different way: those with higher securities add latency to the critical path of the pipeline, while the simpler alternatives leave vulnerabilities to more sophisticated attacks.This paper proposes HyBP, a practical hybrid protection and effective mechanism for building secure branch predictors. The design applies the physical isolation and randomization in the right component to achieve the best of both worlds. We propose to protect the smaller tables with physically isolation based on (thread, privilege) combination; and protect the large tables with randomization. Surprisingly, the physical isolation also significantly enhances the security of the last-level tables by naturally filtering out accesses, reducing the information flow to these bigger tables. As a result, key changes can happen less frequently and be performed conveniently at context switches. Moreover, we propose a latency hiding design for a strong cipher by precomputing the "code book" with a validated, cryptographically strong cipher. Overall, our design incurs a performance penalty of 0.5% compared to 5.1% of physical isolation under the default context switching interval in Linux.
2022-12-20
Xie, Nanjiang, Gong, Zheng, Tang, Yufeng, Wang, Lei, Wen, Yamin.  2022.  Protecting White-Box Block Ciphers with Galois/Counter Mode. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1–7.
All along, white-box cryptography researchers focus on the design and implementation of certain primitives but less to the practice of the cipher working modes. For example, the Galois/Counter Mode (GCM) requires block ciphers to perform only the encrypting operations, which inevitably facing code-lifting attacks under the white-box security model. In this paper, a code-lifting resisted GCM (which is named WBGCM) is proposed to mitigate this security drawbacks in the white-box context. The basic idea is to combining external encodings with exclusive-or operations in GCM, and therefore two different schemes are designed with external encodings (WBGCM-EE) and maskings (WBGCM-Maksing), respectively. Furthermore, WBGCM is instantiated with Chow et al.'s white-box AES, and the experiments show that the processing speeds of WBGCM-EE and WBGCM-Masking achieves about 5 MBytes/Second with a marginal storage overhead.
2022-10-20
Nahar, Nazmun, Ahmed, Md. Kawsher, Miah, Tareq, Alam, Shahriar, Rahman, Kh. Mustafizur, Rabbi, Md. Anayt.  2021.  Implementation of Android Based Text to Image Steganography Using 512-Bit Algorithm with LSB Technique. 2021 5th International Conference on Electrical Information and Communication Technology (EICT). :1—6.
Steganography security is the main concern in today’s informative world. The fact is that communication takes place to hide information secretly. Steganography is the technique of hiding secret data within an ordinary, non-secret, file, text message and images. This technique avoids detection of the secret data then extracted at its destination. The main reason for using steganography is, we can hide any secret message behind its ordinary file. This work presents a unique technique for image steganography based on a 512-bit algorithm. The secure stego image is a very challenging task to give protection. Therefore we used the least significant bit (LSB) techniques for implementing stego and cover image. However, data encryption and decryption are used to embedded text and replace data into the least significant bit (LSB) for better approaches. Android-based interface used in encryption-decryption techniques that evaluated in this process.Contribution—this research work with 512-bit data simultaneously in a block cipher to reduce the time complexity of a system, android platform used for data encryption decryption process. Steganography model works with stego image that interacts with LSB techniques for data hiding.
Senkyire, Isaac Baffour, Marful, Emmanuel Addai, Mensah, Eric Adjei.  2021.  Forensic Digital Data Tamper Detection Using Image Steganography and S-Des. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :59—64.
In this current age, stakeholders exchange legal documents, as well as documents that are official, sensitive and confidential via digital channels[1]. To securely communicate information between stakeholders is not an easy task considering the intentional or unintentional changes and possible attacks that can occur during communication. This paper focuses on protecting and securing data by hiding the data using steganography techniques, after encrypting the data to avoid unauthorized changes or modification made by adversaries to the data through using the Simplified Data Encryption Technique. By leveraging on these two approaches, secret data security intensifies to two levels and a steganography image of high quality is attained. Cryptography converts plaintext into cipher text (unreadable text); whereas steganography is the technique of hiding secret messages in other messages. First encryption of data is done using the Simplified Data Encryption Standard (S-DES) algorithm after which the message encrypted is embedded in the cover image by means of the Least Significant Bit (LSB) approach.