Yang, Xuefeng, Liu, Li, Zhang, Yinggang, Li, Yihao, Liu, Pan, Ai, Shili.
2022.
A Privacy-preserving Approach to Distributed Set-membership Estimation over Wireless Sensor Networks. 2022 9th International Conference on Dependable Systems and Their Applications (DSA). :974—979.
This paper focuses on the system on wireless sensor networks. The system is linear and the time of the system is discrete as well as variable, which named discrete-time linear time-varying systems (DLTVS). DLTVS are vulnerable to network attacks when exchanging information between sensors in the network, as well as putting their security at risk. A DLTVS with privacy-preserving is designed for this purpose. A set-membership estimator is designed by adding privacy noise obeying the Laplace distribution to state at the initial moment. Simultaneously, the differential privacy of the system is analyzed. On this basis, the real state of the system and the existence form of the estimator for the desired distribution are analyzed. Finally, simulation examples are given, which prove that the model after adding differential privacy can obtain accurate estimates and ensure the security of the system state.
Salama, Ramiz, Al-Turjman, Fadi.
2022.
AI in Blockchain Towards Realizing Cyber Security. 2022 International Conference on Artificial Intelligence in Everything (AIE). :471—475.
Blockchain and artificial intelligence are two technologies that, when combined, have the ability to help each other realize their full potential. Blockchains can guarantee the accessibility and consistent admittance to integrity safeguarded big data indexes from numerous areas, allowing AI systems to learn more effectively and thoroughly. Similarly, artificial intelligence (AI) can be used to offer new consensus processes, and hence new methods of engaging with Blockchains. When it comes to sensitive data, such as corporate, healthcare, and financial data, various security and privacy problems arise that must be properly evaluated. Interaction with Blockchains is vulnerable to data credibility checks, transactional data leakages, data protection rules compliance, on-chain data privacy, and malicious smart contracts. To solve these issues, new security and privacy-preserving technologies are being developed. AI-based blockchain data processing, either based on AI or used to defend AI-based blockchain data processing, is emerging to simplify the integration of these two cutting-edge technologies.
S, Harichandana B S, Agarwal, Vibhav, Ghosh, Sourav, Ramena, Gopi, Kumar, Sumit, Raja, Barath Raj Kandur.
2022.
PrivPAS: A real time Privacy-Preserving AI System and applied ethics. 2022 IEEE 16th International Conference on Semantic Computing (ICSC). :9—16.
With 3.78 billion social media users worldwide in 2021 (48% of the human population), almost 3 billion images are shared daily. At the same time, a consistent evolution of smartphone cameras has led to a photography explosion with 85% of all new pictures being captured using smartphones. However, lately, there has been an increased discussion of privacy concerns when a person being photographed is unaware of the picture being taken or has reservations about the same being shared. These privacy violations are amplified for people with disabilities, who may find it challenging to raise dissent even if they are aware. Such unauthorized image captures may also be misused to gain sympathy by third-party organizations, leading to a privacy breach. Privacy for people with disabilities has so far received comparatively less attention from the AI community. This motivates us to work towards a solution to generate privacy-conscious cues for raising awareness in smartphone users of any sensitivity in their viewfinder content. To this end, we introduce PrivPAS (A real time Privacy-Preserving AI System) a novel framework to identify sensitive content. Additionally, we curate and annotate a dataset to identify and localize accessibility markers and classify whether an image is sensitive to a featured subject with a disability. We demonstrate that the proposed lightweight architecture, with a memory footprint of a mere 8.49MB, achieves a high mAP of 89.52% on resource-constrained devices. Furthermore, our pipeline, trained on face anonymized data. achieves an F1-score of 73.1%.
Banciu, Doina, Cîrnu, Carmen Elena.
2022.
AI Ethics and Data Privacy compliance. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1—5.
Throughout history, technological evolution has generated less desired side effects with impact on society. In the field of IT&C, there are ongoing discussions about the role of robots within economy, but also about their impact on the labour market. In the case of digital media systems, we talk about misinformation, manipulation, fake news, etc. Issues related to the protection of the citizen's life in the face of technology began more than 25 years ago; In addition to the many messages such as “the citizen is at the center of concern” or, “privacy must be respected”, transmitted through various channels of different entities or companies in the field of ICT, the EU has promoted a number of legislative and normative documents to protect citizens' rights and freedoms.
Ham, MyungJoo, Woo, Sangjung, Jung, Jaeyun, Song, Wook, Jang, Gichan, Ahn, Yongjoo, Ahn, Hyoungjoo.
2022.
Toward Among-Device AI from On-Device AI with Stream Pipelines. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :285—294.
Modern consumer electronic devices often provide intelligence services with deep neural networks. We have started migrating the computing locations of intelligence services from cloud servers (traditional AI systems) to the corresponding devices (on-device AI systems). On-device AI systems generally have the advantages of preserving privacy, removing network latency, and saving cloud costs. With the emergence of on-device AI systems having relatively low computing power, the inconsistent and varying hardware resources and capabilities pose difficulties. Authors' affiliation has started applying a stream pipeline framework, NNStreamer, for on-device AI systems, saving developmental costs and hardware resources and improving performance. We want to expand the types of devices and applications with on-device AI services products of both the affiliation and second/third parties. We also want to make each AI service atomic, re-deployable, and shared among connected devices of arbitrary vendors; we now have yet another requirement introduced as it always has been. The new requirement of “among-device AI” includes connectivity between AI pipelines so that they may share computing resources and hardware capabilities across a wide range of devices regardless of vendors and manufacturers. We propose extensions of the stream pipeline framework, NNStreamer, for on-device AI so that NNStreamer may provide among-device AI capability. This work is a Linux Foundation (LF AI & Data) open source project accepting contributions from the general public.
Abbasi, Wisam, Mori, Paolo, Saracino, Andrea, Frascolla, Valerio.
2022.
Privacy vs Accuracy Trade-Off in Privacy Aware Face Recognition in Smart Systems. 2022 IEEE Symposium on Computers and Communications (ISCC). :1—8.
This paper proposes a novel approach for privacy preserving face recognition aimed to formally define a trade-off optimization criterion between data privacy and algorithm accuracy. In our methodology, real world face images are anonymized with Gaussian blurring for privacy preservation. The anonymized images are processed for face detection, face alignment, face representation, and face verification. The proposed methodology has been validated with a set of experiments on a well known dataset and three face recognition classifiers. The results demonstrate the effectiveness of our approach to correctly verify face images with different levels of privacy and results accuracy, and to maximize privacy with the least negative impact on face detection and face verification accuracy.
Golatkar, Aditya, Achille, Alessandro, Wang, Yu-Xiang, Roth, Aaron, Kearns, Michael, Soatto, Stefano.
2022.
Mixed Differential Privacy in Computer Vision. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :8366—8376.
We introduce AdaMix, an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data. While pre-training language models on large public datasets has enabled strong differential privacy (DP) guarantees with minor loss of accuracy, a similar practice yields punishing trade-offs in vision tasks. A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset. AdaMix incorporates few-shot training, or cross-modal zero-shot learning, on public data prior to private fine-tuning, to improve the trade-off. AdaMix reduces the error increase from the non-private upper bound from the 167–311% of the baseline, on average across 6 datasets, to 68-92% depending on the desired privacy level selected by the user. AdaMix tackles the trade-off arising in visual classification, whereby the most privacy sensitive data, corresponding to isolated points in representation space, are also critical for high classification accuracy. In addition, AdaMix comes with strong theoretical privacy guarantees and convergence analysis.
Rasch, Martina, Martino, Antonio, Drobics, Mario, Merenda, Massimo.
2022.
Short-Term Time Series Forecasting based on Edge Machine Learning Techniques for IoT devices. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1—5.
As the effects of climate change are becoming more and more evident, the importance of improved situation awareness is also gaining more attention, both in the context of preventive environmental monitoring and in the context of acute crisis response. One important aspect of situation awareness is the correct and thorough monitoring of air pollutants. The monitoring is threatened by sensor faults, power or network failures, or other hazards leading to missing or incorrect data transmission. For this reason, in this work we propose two complementary approaches for predicting missing sensor data and a combined technique for detecting outliers. The proposed solution can enhance the performance of low-cost sensor systems, closing the gap of missing measurements due to network unavailability, detecting drift and outliers thus paving the way to its use as an alert system for reportable events. The techniques have been deployed and tested also in a low power microcontroller environment, verifying the suitability of such a computing power to perform the inference locally, leading the way to an edge implementation of a virtual sensor digital twin.
Wolsing, Konrad, Saillard, Antoine, Bauer, Jan, Wagner, Eric, van Sloun, Christian, Fink, Ina Berenice, Schmidt, Mari, Wehrle, Klaus, Henze, Martin.
2022.
Network Attacks Against Marine Radar Systems: A Taxonomy, Simulation Environment, and Dataset. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :114—122.
Shipboard marine radar systems are essential for safe navigation, helping seafarers perceive their surroundings as they provide bearing and range estimations, object detection, and tracking. Since onboard systems have become increasingly digitized, interconnecting distributed electronics, radars have been integrated into modern bridge systems. But digitization increases the risk of cyberattacks, especially as vessels cannot be considered air-gapped. Consequently, in-depth security is crucial. However, particularly radar systems are not sufficiently protected against harmful network-level adversaries. Therefore, we ask: Can seafarers believe their eyes? In this paper, we identify possible attacks on radar communication and discuss how these threaten safe vessel operation in an attack taxonomy. Furthermore, we develop a holistic simulation environment with radar, complementary nautical sensors, and prototypically implemented cyberattacks from our taxonomy. Finally, leveraging this environment, we create a comprehensive dataset (RadarPWN) with radar network attacks that provides a foundation for future security research to secure marine radar communication.
Sharma, Himanshu, Kumar, Neeraj, Tekchandani, Raj Kumar, Mohammad, Nazeeruddin.
2022.
Deep Learning enabled Channel Secrecy Codes for Physical Layer Security of UAVs in 5G and beyond Networks. ICC 2022 - IEEE International Conference on Communications. :1—6.
Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.
Tabak, Z., Keko, H., Sučić, S..
2022.
Semantic data integration in upgrading hydro power plants cyber security. 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). :50—54.
In the recent years, we have witnessed quite notable cyber-attacks targeting industrial automation control systems. Upgrading their cyber security is a challenge, not only due to long equipment lifetimes and legacy protocols originally designed to run in air-gapped networks. Even where multiple data sources are available and collection established, data interpretation usable across the different data sources remains a challenge. A modern hydro power plant contains the data sources that range from the classical distributed control systems to newer IoT- based data sources, embedded directly within the plant equipment and deeply integrated in the process. Even abundant collected data does not solve the security problems by itself. The interpretation of data semantics is limited as the data is effectively siloed. In this paper, the relevance of semantic integration of diverse data sources is presented in the context of a hydro power plant. The proposed semantic integration would increase the data interoperability, unlocking the data siloes and thus allowing ingestion of complementary data sources. The principal target of the data interoperability is to support the data-enhanced cyber security in an operational hydro power plant context. Furthermore, the opening of the data siloes would enable additional usage of the existing data sources in a structured semantically enriched form.
Xu, Huikai, Yu, Miao, Wang, Yanhao, Liu, Yue, Hou, Qinsheng, Ma, Zhenbang, Duan, Haixin, Zhuge, Jianwei, Liu, Baojun.
2022.
Trampoline Over the Air: Breaking in IoT Devices Through MQTT Brokers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :171—187.
MQTT is widely adopted by IoT devices because it allows for the most efficient data transfer over a variety of communication lines. The security of MQTT has received increasing attention in recent years, and several studies have demonstrated the configurations of many MQTT brokers are insecure. Adversaries are allowed to exploit vulnerable brokers and publish malicious messages to subscribers. However, little has been done to understanding the security issues on the device side when devices handle unauthorized MQTT messages. To fill this research gap, we propose a fuzzing framework named ShadowFuzzer to find client-side vulnerabilities when processing incoming MQTT messages. To avoiding ethical issues, ShadowFuzzer redirects traffic destined for the actual broker to a shadow broker under the control to monitor vulnerabilities. We select 15 IoT devices communicating with vulnerable brokers and leverage ShadowFuzzer to find vulnerabilities when they parse MQTT messages. For these devices, ShadowFuzzer reports 34 zero-day vulnerabilities in 11 devices. We evaluated the exploitability of these vulnerabilities and received a total of 44,000 USD bug bounty rewards. And 16 CVE/CNVD/CN-NVD numbers have been assigned to us.
Shaikh, Rizwan Ahmed, Sohaib Khan, Muhammad, Rashid, Imran, Abbas, Haidar, Naeem, Farrukh, Siddiqi, Muhammad Haroon.
2022.
A Framework for Human Error, Weaknesses, Threats & Mitigation Measures in an Airgapped Network. 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2). :1—8.
Many organizations process and store classified data within their computer networks. Owing to the value of data that they hold; such organizations are more vulnerable to targets from adversaries. Accordingly, the sensitive organizations resort to an ‘air-gap’ approach on their networks, to ensure better protection. However, despite the physical and logical isolation, the attackers have successfully manifested their capabilities by compromising such networks; examples of Stuxnet and Agent.btz in view. Such attacks were possible due to the successful manipulation of human beings. It has been observed that to build up such attacks, persistent reconnaissance of the employees, and their data collection often forms the first step. With the rapid integration of social media into our daily lives, the prospects for data-seekers through that platform are higher. The inherent risks and vulnerabilities of social networking sites/apps have cultivated a rich environment for foreign adversaries to cherry-pick personal information and carry out successful profiling of employees assigned with sensitive appointments. With further targeted social engineering techniques against the identified employees and their families, attackers extract more and more relevant data to make an intelligent picture. Finally, all the information is fused to design their further sophisticated attacks against the air-gapped facility for data pilferage. In this regard, the success of the adversaries in harvesting the personal information of the victims largely depends upon the common errors committed by legitimate users while on duty, in transit, and after their retreat. Such errors would keep on repeating unless these are aligned with their underlying human behaviors and weaknesses, and the requisite mitigation framework is worked out.
Daughety, Nathan, Pendleton, Marcus, Perez, Rebeca, Xu, Shouhuai, Franco, John.
2022.
Auditing a Software-Defined Cross Domain Solution Architecture. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :96—103.
In the context of cybersecurity systems, trust is the firm belief that a system will behave as expected. Trustworthiness is the proven property of a system that is worthy of trust. Therefore, trust is ephemeral, i.e. trust can be broken; trustworthiness is perpetual, i.e. trustworthiness is verified and cannot be broken. The gap between these two concepts is one which is, alarmingly, often overlooked. In fact, the pressure to meet with the pace of operations for mission critical cross domain solution (CDS) development has resulted in a status quo of high-risk, ad hoc solutions. Trustworthiness, proven through formal verification, should be an essential property in any hardware and/or software security system. We have shown, in "vCDS: A Virtualized Cross Domain Solution Architecture", that developing a formally verified CDS is possible. virtual CDS (vCDS) additionally comes with security guarantees, i.e. confidentiality, integrity, and availability, through the use of a formally verified trusted computing base (TCB). In order for a system, defined by an architecture description language (ADL), to be considered trustworthy, the implemented security configuration, i.e. access control and data protection models, must be verified correct. In this paper we present the first and only security auditing tool which seeks to verify the security configuration of a CDS architecture defined through ADL description. This tool is useful in mitigating the risk of existing solutions by ensuring proper security enforcement. Furthermore, when coupled with the agile nature of vCDS, this tool significantly increases the pace of system delivery.
Shahjee, Deepesh, Ware, Nilesh.
2022.
Designing a Framework of an Integrated Network and Security Operation Center: A Convergence Approach. 2022 IEEE 7th International conference for Convergence in Technology (I2CT). :1—4.
Cyber-security incidents have grown significantly in modern networks, far more diverse and highly destructive and disruptive. According to the 2021 Cyber Security Statistics Report [1], cybercrime is up 600% during this COVID pandemic, the top attacks are but are not confined to (a) sophisticated phishing emails, (b) account and DNS hijacking, (c) targeted attacks using stealth and air gap malware, (d) distributed denial of services (DDoS), (e) SQL injection. Additionally, 95% of cyber-security breaches result from human error, according to Cybint Report [2]. The average time to identify a breach is 207 days as per Ponemon Institute and IBM, 2022 Cost of Data Breach Report [3]. However, various preventative controls based on cyber-security risk estimation and awareness results decrease most incidents, but not all. Further, any incident detection delay and passive actions to cyber-security incidents put the organizational assets at risk. Therefore, the cyber-security incident management system has become a vital part of the organizational strategy. Thus, the authors propose a framework to converge a "Security Operation Center" (SOC) and a "Network Operations Center" (NOC) in an "Integrated Network Security Operation Center" (INSOC), to overcome cyber-threat detection and mitigation inefficiencies in the near-real-time scenario. We applied the People, Process, Technology, Governance and Compliance (PPTGC) approach to develop the INSOC conceptual framework, according to the requirements we formulated for its operation [4], [5]. The article briefly describes the INSOC conceptual framework and its usefulness, including the central area of the PPTGC approach while designing the framework.
Guri, Mordechai.
2022.
ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
Guri, Mordechai.
2022.
SATAn: Air-Gap Exfiltration Attack via Radio Signals From SATA Cables. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
This paper introduces a new type of attack on isolated, air-gapped workstations. Although air-gap computers have no wireless connectivity, we show that attackers can use the SATA cable as a wireless antenna to transfer radio signals at the 6 GHz frequency band. The Serial ATA (SATA) is a bus interface widely used in modern computers and connects the host bus to mass storage devices such as hard disk drives, optical drives, and solid-state drives. The prevalence of the SATA interface makes this attack highly available to attackers in a wide range of computer systems and IT environments. We discuss related work on this topic and provide technical background. We show the design of the transmitter and receiver and present the implementation of these components. We also demonstrate the attack on different computers and provide the evaluation. The results show that attackers can use the SATA cable to transfer a brief amount of sensitive information from highly secured, air-gap computers wirelessly to a nearby receiver. Furthermore, we show that the attack can operate from user mode, is effective even from inside a Virtual Machine (VM), and can successfully work with other running workloads in the background. Finally, we discuss defense and mitigation techniques for this new air-gap attack.
Da Costa, Alessandro Monteiro, de Sá, Alan Oliveira, Machado, Raphael C. S..
2022.
Data Acquisition and extraction on mobile devices-A Review. 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). :294—299.
Forensic Science comprises a set of technical-scientific knowledge used to solve illicit acts. The increasing use of mobile devices as the main computing platform, in particular smartphones, makes existing information valuable for forensics. However, the blocking mechanisms imposed by the manufacturers and the variety of models and technologies make the task of reconstructing the data for analysis challenging. It is worth mentioning that the conclusion of a case requires more than the simple identification of evidence, as it is extremely important to correlate all the data and sources obtained, to confirm a suspicion or to seek new evidence. This work carries out a systematic review of the literature, identifying the different types of existing image acquisition and the main extraction and encryption methods used in smartphones with the Android operating system.
Dhiman, Bhavya, Bose S, Rubin.
2022.
A Reliable, Secure and Efficient Decentralised Conditional of KYC Verification System: A Blockchain Approach. 2022 International Conference on Edge Computing and Applications (ICECAA). :564—570.
KYC or Know Your Customer is the procedure to verify the individuality of its consumers & evaluating the possible dangers of illegitimate trade relations. A few problems with the existing KYC manual process are that it is less secure, time-consuming and expensive. With the advent of Blockchain technology, its structures such as consistency, security, and geographical diversity make them an ideal solution to such problems. Although marketing solutions such as KYC-chain.co, K-Y-C. The legal right to enable blockchain-based KYC authentication provides a way for documents to be verified by a trusted network participant. This project uses an ETHereum based Optimised KYC Block-chain system with uniform A-E-S encryption and compression built on the LZ method. The system publicly verifies a distributed encryption, is protected by cryptography, operates by pressing the algorithm and is all well-designed blockchain features. The suggested scheme is a novel explanation based on Distributed Ledger Technology or Blockchain technology that would cut KYC authentication process expenses of organisations & decrease the regular schedule for completion of the procedure whilst becoming easier for clients. The largest difference in the system in traditional methods is the full authentication procedure is performed in just no time for every client, regardless of the number of institutions you desire to be linked to. Furthermore, since DLT is employed, validation findings may be securely distributed to consumers, enhancing transparency. Based on this method, a Proof of Concept (POC) is produced with Ethereum's API, websites as endpoints and the android app as the front office, recognising the viability and efficacy of this technique. Ultimately, this strategy enhances consumer satisfaction, lowers budget overrun & promotes transparency in the customer transport network.
Khalid, Saneeha, Hussain, Faisal Bashir.
2022.
Evaluating Opcodes for Detection of Obfuscated Android Malware. 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :044—049.
Obfuscation refers to changing the structure of code in a way that original semantics can be hidden. These techniques are often used by application developers for code hardening but it has been found that obfuscation techniques are widely used by malware developers in order to hide the work flow and semantics of malicious code. Class Encryption, Code Re-Ordering, Junk Code insertion and Control Flow modifications are Code Obfuscation techniques. In these techniques, code of the application is changed. These techniques change the signature of the application and also affect the systems that use sequence of instructions in order to detect maliciousness of an application. In this paper an ’Opcode sequence’ based detection system is designed and tested against obfuscated samples. It has been found that the system works efficiently for the detection of non obfuscated samples but the performance is effected significantly against obfuscated samples. The study tests different code obfuscation schemes and reports the effect of each on sequential opcode based analytic system.
Chandrashekhar, RV, Visumathi, J, Anandaraj, A. PeterSoosai.
2022.
Advanced Lightweight Encryption Algorithm for Android (IoT) Devices. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1—5.
Security and Controls with Data privacy in Internet of Things (IoT) devices is not only a present and future technology that is projected to connect a multitude of devices, but it is also a critical survival factor for IoT to thrive. As the quantity of communications increases, massive amounts of data are expected to be generated, posing a threat to both physical device and data security. In the Internet of Things architecture, small and low-powered devices are widespread. Due to their complexity, traditional encryption methods and algorithms are computationally expensive, requiring numerous rounds to encrypt and decode, squandering the limited energy available on devices. A simpler cryptographic method, on the other hand, may compromise the intended confidentiality and integrity. This study examines two lightweight encryption algorithms for Android devices: AES and RSA. On the other hand, the traditional AES approach generates preset encryption keys that the sender and receiver share. As a result, the key may be obtained quickly. In this paper, we present an improved AES approach for generating dynamic keys.