Visible to the public Biblio

Filters: Keyword is Power systems  [Clear All Filters]
2022-04-22
Iqbal, Talha, Banna, Hasan Ul, Feliachi, Ali.  2021.  AI-Driven Security Constrained Unit Commitment Using Eigen Decomposition And Linear Shift Factors. 2021 North American Power Symposium (NAPS). :01—06.
Unit Commitment (UC) problem is one of the most fundamental constrained optimization problems in the planning and operation of electric power systems and electricity markets. Solving a large-scale UC problem requires a lot of computational effort which can be improved using data driven approaches. In practice, a UC problem is solved multiple times a day with only minor changes in the input data. Hence, this aspect can be exploited by using the historical data to solve the problem. In this paper, an Artificial Intelligence (AI) based approach is proposed to solve a Security Constrained UC problem. The proposed algorithm was tested through simulations on a 4-bus power system and satisfactory results were obtained. The results were compared with those obtained using IBM CPLEX MIQP solver.
2022-04-20
Keshk, Marwa, Turnbull, Benjamin, Moustafa, Nour, Vatsalan, Dinusha, Choo, Kim-Kwang Raymond.  2020.  A Privacy-Preserving-Framework-Based Blockchain and Deep Learning for Protecting Smart Power Networks. IEEE Transactions on Industrial Informatics. 16:5110–5118.
Modern power systems depend on cyber-physical systems to link physical devices and control technologies. A major concern in the implementation of smart power networks is to minimize the risk of data privacy violation (e.g., by adversaries using data poisoning and inference attacks). In this article, we propose a privacy-preserving framework to achieve both privacy and security in smart power networks. The framework includes two main modules: a two-level privacy module and an anomaly detection module. In the two-level privacy module, an enhanced-proof-of-work-technique-based blockchain is designed to verify data integrity and mitigate data poisoning attacks, and a variational autoencoder is simultaneously applied for transforming data into an encoded format for preventing inference attacks. In the anomaly detection module, a long short-term memory deep learning technique is used for training and validating the outputs of the two-level privacy module using two public datasets. The results highlight that the proposed framework can efficiently protect data of smart power networks and discover abnormal behaviors, in comparison to several state-of-the-art techniques.
Conference Name: IEEE Transactions on Industrial Informatics
Keshk, Marwa, Sitnikova, Elena, Moustafa, Nour, Hu, Jiankun, Khalil, Ibrahim.  2021.  An Integrated Framework for Privacy-Preserving Based Anomaly Detection for Cyber-Physical Systems. IEEE Transactions on Sustainable Computing. 6:66–79.
Protecting Cyber-physical Systems (CPSs) is highly important for preserving sensitive information and detecting cyber threats. Developing a robust privacy-preserving anomaly detection method requires physical and network data about the systems, such as Supervisory Control and Data Acquisition (SCADA), for protecting original data and recognising cyber-attacks. In this paper, a new privacy-preserving anomaly detection framework, so-called PPAD-CPS, is proposed for protecting confidential information and discovering malicious observations in power systems and their network traffic. The framework involves two main modules. First, a data pre-processing module is suggested for filtering and transforming original data into a new format that achieves the target of privacy preservation. Second, an anomaly detection module is suggested using a Gaussian Mixture Model (GMM) and Kalman Filter (KF) for precisely estimating the posterior probabilities of legitimate and anomalous events. The performance of the PPAD-CPS framework is assessed using two public datasets, namely the Power System and UNSW-NB15 dataset. The experimental results show that the framework is more effective than four recent techniques for obtaining high privacy levels. Moreover, the framework outperforms seven peer anomaly detection techniques in terms of detection rate, false positive rate, and computational time.
Conference Name: IEEE Transactions on Sustainable Computing
2022-03-14
Huang, Hao, Davis, C. Matthew, Davis, Katherine R..  2021.  Real-time Power System Simulation with Hardware Devices through DNP3 in Cyber-Physical Testbed. 2021 IEEE Texas Power and Energy Conference (TPEC). :1—6.
Modern power grids are dependent on communication systems for data collection, visualization, and control. Distributed Network Protocol 3 (DNP3) is commonly used in supervisory control and data acquisition (SCADA) systems in power systems to allow control system software and hardware to communicate. To study the dependencies between communication network security, power system data collection, and industrial hardware, it is important to enable communication capabilities with real-time power system simulation. In this paper, we present the integration of new functionality of a power systems dynamic simulation package into our cyber-physical power system testbed that supports real-time power system data transfer using DNP3, demonstrated with an industrial real-time automation controller (RTAC). The usage and configuration of DNP3 with real-world equipment in to achieve power system monitoring and control of a large-scale synthetic electric grid via this DNP3 communication is presented. Then, an exemplar of DNP3 data collection and control is achieved in software and hardware using the 2000-bus Texas synthetic grid.
2022-03-02
Tang, Fei, Jia, Hao, Shi, Linxin, Zheng, Minghong.  2021.  Information Security Protection of Power System Computer Network. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1226–1229.
With the reform of the power market(PM), various power applications based on computer networks have also developed. As a network application system supporting the operation of the PM, the technical support system(TSS) of the PM has become increasingly important for its network information security(NIS). The purpose of this article is to study the security protection of computer network information in power systems. This paper proposes an identity authentication algorithm based on digital signatures to verify the legitimacy of system user identities; on the basis of PMI, according to the characteristics of PM access control, a role-based access control model with time and space constraints is proposed, and a role-based access control model is designed. The access control algorithm based on the attribute certificate is used to manage the user's authority. Finally, according to the characteristics of the electricity market data, the data security transmission algorithm is designed and the feasibility is verified. This paper presents the supporting platform for the security test and evaluation of the network information system, and designs the subsystem and its architecture of the security situation assessment (TSSA) and prediction, and then designs the key technologies in this process in detail. This paper implements the subsystem of security situation assessment and prediction, and uses this subsystem to combine with other subsystems in the support platform to perform experiments, and finally adopts multiple manifestations, and the trend of the system's security status the graph is presented to users intuitively. Experimental studies have shown that the residual risks in the power system after implementing risk measures in virtual mode can reduce the risk value of the power system to a fairly low level by implementing only three reinforcement schemes.
2022-03-01
ZHU, Guowei, YUAN, Hui, ZHUANG, Yan, GUO, Yue, ZHANG, Xianfei, QIU, Shuang.  2021.  Research on Network Intrusion Detection Method of Power System Based on Random Forest Algorithm. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :374–379.
Aiming at the problem of low detection accuracy in traditional power system network intrusion detection methods, in order to improve the performance of power system network intrusion detection, a power system network intrusion detection method based on random forest algorithm is proposed. Firstly, the power system network intrusion sub sample is selected to construct the random forest decision tree. The random forest model is optimized by using the edge function. The accuracy of the vector is judged by the minimum state vector of the power system network, and the measurement residual of the power system network attack is calculated. Finally, the power system network intrusion data set is clustered by Gaussian mixture clustering Through the design of power system network intrusion detection process, the power system network intrusion detection is realized. The experimental results show that the power system network intrusion detection method based on random forest algorithm has high network intrusion detection performance.
2022-02-07
Zhou, Xiaojun, Wang, Liming, Lu, Yan, Dong, Zhiwei, Zhang, Wuyang, Yuan, Yidong, Li, Qi.  2021.  Research on Impact Assessment of Attacks on Power Terminals. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1401–1404.
The power terminal network has the characteristics of a large number of nodes, various types, and complex network topology. After the power terminal network is attacked, the impact of power terminals in different business scenarios is also different. Traditional impact assessment methods based on network traffic or power system operation rules are difficult to achieve comprehensive attack impact analysis. In this paper, from the three levels of terminal security itself, terminal network security and terminal business application security, it constructs quantitative indicators for analyzing the impact of power terminals after being attacked, so as to determine the depth and breadth of the impact of the attack on the power terminal network, and provide the next defense measures with realistic basis.
2022-02-04
Cui, Ajun, Zhao, Hong, Zhang, Xu, Zhao, Bo, Li, Zhiru.  2021.  Power system real time data encryption system based on DES algorithm. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :220–228.
To ensure the safe operation of power system, this paper studies two technologies of data encryption and digital signature, and designs a real-time data encryption system based on DES algorithm, which improves the security of data network communication. The real-time data encryption system of power system is optimized by the hybrid encryption system based on DES algorithm. The real-time data encryption of power system adopts triple DES algorithm, and double DES encryption algorithm of RSA algorithm to ensure the security of triple DES encryption key, which solves the problem of real-time data encryption management of power system. Java security packages are used to implement digital signatures that guarantee data integrity and non-repudiation. Experimental results show that the data encryption system is safe and effective.
2022-01-11
Roberts, Ciaran, Ngo, Sy-Toan, Milesi, Alexandre, Scaglione, Anna, Peisert, Sean, Arnold, Daniel.  2021.  Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks. 2021 American Control Conference (ACC). :2861–2867.
The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.
2022-01-10
Wang, Wenhui, Han, Longxi, Ge, Guangkai, Yang, Zhenghao.  2021.  An Algorithm of Optimal Penetration Path Generation under Unknown Attacks of Electric Power WEB System Based on Knowledge Graph. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :141–144.
Aiming at the disadvantages of traditional methods such as low penetration path generation efficiency and low attack type recognition accuracy, an optimal penetration path generation algorithm based on the knowledge map power WEB system unknown attack is proposed. First, establish a minimum penetration path test model. And use the model to test the unknown attack of the penetration path under the power WEB system. Then, the ontology of the knowledge graph is designed. Finally, the design of the optimal penetration path generation algorithm based on the knowledge graph is completed. Experimental results show that the algorithm improves the efficiency of optimal penetration path generation, overcomes the shortcomings of traditional methods that can only describe known attacks, and can effectively guarantee the security of power WEB systems.
Sahu, Abhijeet, Davis, Katherine.  2021.  Structural Learning Techniques for Bayesian Attack Graphs in Cyber Physical Power Systems. 2021 IEEE Texas Power and Energy Conference (TPEC). :1–6.

Updating the structure of attack graph templates based on real-time alerts from Intrusion Detection Systems (IDS), in an Industrial Control System (ICS) network, is currently done manually by security experts. But, a highly-connected smart power systems, that can inadvertently expose numerous vulnerabilities to intruders for targeting grid resilience, needs automatic fast updates on learning attack graph structures, instead of manual intervention, to enable fast isolation of compromised network to secure the grid. Hence, in this work, we develop a technique to first construct a prior Bayesian Attack Graph (BAG) based on a predefined threat model and a synthetic communication network for a cyber-physical power system. Further, we evaluate a few score-based and constraint-based structural learning algorithms to update the BAG structure based on real-time alerts, based on scalability, data dependency, time complexity and accuracy criteria.

Guan, Xiaojuan, Ma, Yuanyuan, SHAO, Zhipeng, Cao, Wantian.  2021.  Research on Key Node Method of Network Attack Graph Based on Power Information Physical System. 2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC)2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC). :48–51.
With the increasing scale of network, the scale of attack graph has been becoming larger and larger, and the number of nodes in attack graph is also increasing, which can not directly reflect the impact of nodes on the whole system. Therefore, in this paper, a method was proposed to determine the key nodes of network attack graph of power information physical system to solve the problem of uncertain emphasis of security protection of attack graph.
2021-12-21
Chen, Lu, Dai, Zaojian, CHEN, Mu, Li, Nige.  2021.  Research on the Security Protection Framework of Power Mobile Internet Services Based on Zero Trust. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA). :65–68.
Under the background of increasingly severe security situation, the new working mode of power mobile internet business anytime and anywhere has greatly increased the complexity of network interaction. At the same time, various means of breaking through the boundary protection and moving laterally are emerging in an endless stream. The existing boundary-based mobility The security protection architecture is difficult to effectively respond to the current complex and diverse network attacks and threats, and faces actual combat challenges. This article first analyzes the security risks faced by the existing power mobile Internet services, and conducts a collaborative analysis of the key points of zero-trust based security protection from multiple perspectives such as users, terminals, and applications; on this basis, from identity security authentication, continuous trust evaluation, and fine-grained access The dimension of control, fine-grained access control based on identity trust, and the design of a zero-trust-based power mobile interconnection business security protection framework to provide theoretical guidance for power mobile business security protection.
2021-12-20
Umar, Sani, Felemban, Muhamad, Osais, Yahya.  2021.  Advanced Persistent False Data Injection Attacks Against Optimal Power Flow in Power Systems. 2021 International Wireless Communications and Mobile Computing (IWCMC). :469–474.
Recently, cyber security in power systems has captured significant interest. This is because the world has seen a surge in cyber attacks on power systems. One of the prolific cyber attacks in modern power systems are False Data Injection Attacks (FDIA). In this paper, we analyzed the impact of FDIA on the operation cost of power systems. Also, we introduced a novel Advanced Persistent Threat (APT) based attack strategy that maximizes the operating costs when attacking specific nodes in the system. We model the attack strategy using an optimization problem and use metaheuristics algorithms to solve the optimization problem and execute the attack. We have found that our attacks can increase the power generation cost by up to 15.6%, 60.12%, and 74.02% on the IEEE 6-Bus systems, 30-Bus systems, and 118-Bus systems, respectively, as compared to normal operation.
2021-11-29
Qu, Yanfeng, Chen, Gong, Liu, Xin, Yan, Jiaqi, Chen, Bo, Jin, Dong.  2020.  Cyber-Resilience Enhancement of PMU Networks Using Software-Defined Networking. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
Phasor measurement unit (PMU) networks are increasingly deployed to offer timely and high-precision measurement of today's highly interconnected electric power systems. To enhance the cyber-resilience of PMU networks against malicious attacks and system errors, we develop an optimization-based network management scheme based on the software-defined networking (SDN) communication infrastructure to recovery PMU network connectivity and restore power system observability. The scheme enables fast network recovery by optimizing the path generation and installation process, and moreover, compressing the SDN rules to be installed on the switches. We develop a prototype system and perform system evaluation in terms of power system observability, recovery speed, and rule compression using the IEEE 30-bus system and IEEE 118-bus system.
Shahsavari, Alireza, Farajollahi, Mohammad, Stewart, Emma, Rad, Hamed Mohsenian.  2020.  Situational Awareness in Distribution Grid Using Micro-PMU Data: A Machine Learning Approach. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–1.
The recent development of distribution-level phasor measurement units, a.k.a. micro-PMUs, has been an important step towards achieving situational awareness in power distribution networks. The challenge however is to transform the large amount of data that is generated by micro-PMUs to actionable information and then match the information to use cases with practical value to system operators. This open problem is addressed in this paper. First, we introduce a novel data-driven event detection technique to pick out valuable portion of data from extremely large raw micro-PMU data. Subsequently, a datadriven event classifier is developed to effectively classify power quality events. Importantly, we use field expert knowledge and utility records to conduct an extensive data-driven event labeling. Moreover, certain aspects from event detection analysis are adopted as additional features to be fed into the classifier model. In this regard, a multi-class support vector machine (multi-SVM) classifier is trained and tested over 15 days of real-world data from two micro-PMUs on a distribution feeder in Riverside, CA. In total, we analyze 1.2 billion measurement points, and 10,700 events. The effectiveness of the developed event classifier is compared with prevalent multi-class classification methods, including k-nearest neighbor method as well as decision-tree method. Importantly, two real-world use-cases are presented for the proposed data analytics tools, including remote asset monitoring and distribution-level oscillation analysis.
2021-10-04
Thakur, Subhasis, Breslin, John G..  2020.  Real-time Peer to Peer Energy Trade with Blockchain Offline Channels. 2020 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
Blockchain become a suitable platform for peer to peer energy trade as it facilitates secure interactions among parties with trust or a mutual trusted 3rd party. However, the scalability issue of blockchains is a problem for real-time energy trade to be completed within a small time duration. In this paper, we use offline channels for blockchains to circumvent scalability problems of blockchains for peer to peer energy trade with small trade duration. We develop algorithms to find stable coalitions for energy trade using blockchain offline channels. We prove that our solution is secure against adversarial prosumer behaviors, it supports real-time trade as the algorithm is guaranteed to find and record stable coalitions before a fixed time, and the coalition structure generated by the algorithm is efficient.
2021-09-30
Cao, Yaofu, Li, Xiaomeng, Zhang, Shulin, Li, Yang, Chen, Liang, He, Yunrui.  2020.  Design of network security situation awareness analysis module for electric power dispatching and control system. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). :716–720.
The current network security situation of the electric power dispatching and control system is becoming more and more severe. On the basis of the original network security management platform, to increase the collection of network security data information and improve the network security analysis ability, this article proposes the electric power dispatching and control system network security situation awareness analysis module. The perception layer accesses multi-source heterogeneous data sources. Upwards through the top layer, data standardization will be introduced, who realizes data support for security situation analysis, and forms an association mapping with situation awareness elements such as health situation, attack situation, behavior situation, and operation situation. The overall effect is achieving the construction goals of "full control of equipment status, source of security attacks can be traced, operational risks are identifiable, and abnormal behaviors can be found.".
2021-09-09
Zeke, LI, Zewen, CHEN, Chunyan, WANG, Zhiguang, XU, Ye, LIANG.  2020.  Research on Security Evaluation Technology of Wireless Access of Electric Power Monitoring System Based on Fuzzy. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET). :318–321.
In order to solve the defense problem of wireless network security threats in new energy stations, a new wireless network security risk assessment model which proposes a wireless access security evaluation method for power monitoring system based on fuzzy theory, was established based on the study of security risk assessment methods in this paper. The security evaluation method first divides the security evaluation factor set, then determines the security evaluation weight coefficient, then calculates the network security level membership matrix, and finally combines specific examples to analyze the resulting data. this paper provided new ideas and methods for the wireless access security evaluation of new energy stations.
2021-07-27
Beyza, Jesus, Bravo, Victor M., Garcia-Paricio, Eduardo, Yusta, Jose M., Artal-Sevil, Jesus S..  2020.  Vulnerability and Resilience Assessment of Power Systems: From Deterioration to Recovery via a Topological Model based on Graph Theory. 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). 4:1–6.
Traditionally, vulnerability is the level of degradation caused by failures or disturbances, and resilience is the ability to recover after a high-impact event. This paper presents a topological procedure based on graph theory to evaluate the vulnerability and resilience of power grids. A cascading failures model is developed by eliminating lines both deliberately and randomly, and four restoration strategies inspired by the network approach are proposed. In the two cases, the degradation and recovery of the electrical infrastructure are quantified through four centrality measures. Here, an index called flow-capacity is proposed to measure the level of network overload during the iterative processes. The developed sequential framework was tested on a graph of 600 nodes and 1196 edges built from the 400 kV high-voltage power system in Spain. The conclusions obtained show that the statistical graph indices measure different topological aspects of the network, so it is essential to combine the results to obtain a broader view of the structural behaviour of the infrastructure.
2021-07-07
Wang, Yang, Wei, Xiaogang.  2020.  A Security Model of Ubiquitous Power Internet of Things Based on SDN and DFI. 2020 Information Communication Technologies Conference (ICTC). :55–58.
Security is the basic topic for the normal operation of the power Internet of Things, and its growing scale determines the trend of dynamic deployment and flexible expansion in the future to meet the ever-changing needs. While large-scale networks have a high cost of hardware resources, so the security protection of the ubiquitous power Internet of Things must be lightweight. In this paper, we propose to build a platform of power Internet of things based on SDN (Software Defined Network) technology and extend the openflow protocol by adding some types of actions and meters to achieve the purpose of on-demand monitoring, dynamic defense and flexible response. To achieve the purpose of lightweight protection, we take advantage of DFI(Deep Flow Inspection) technology to collect and analyze traffic in the Internet of Things, and form a security prevention and control strategy model suitable for the power Internet of Things, without in-depth detection of payload and without the influence of ciphertext.
2021-06-30
Wang, Chenguang, Tindemans, Simon, Pan, Kaikai, Palensky, Peter.  2020.  Detection of False Data Injection Attacks Using the Autoencoder Approach. 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1—6.
State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in `normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
Xiong, Xiaoping, Sun, Di, Hao, Shaolei, Lin, Guangyang, Li, Hang.  2020.  Detection of False Data Injection Attack Based on Improved Distortion Index Method. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1161—1168.
With the advancement of communication technology, the interoperability of the power grid operation has improved significantly, but due to its dependence on the communication system, it is extremely vulnerable to network attacks. Among them, the false data injection attack utilizes the loophole of bad data detection in the system and attacks the state estimation system, resulting in frequent occurrence of abnormal data in the system, which brings great harm to the power grid. In view of the fact that false data injection attacks are easy to avoid traditional bad data detection methods, this paper analyzes the different situations of false data injection attacks based on the characteristics of the power grid. Firstly, it proposes to apply the distortion index method to false data injection attack detection. Experiments prove that the detection results are good and can be complementary to traditional detection methods. Then, combined with the traditional normalized residual method, this paper proposes the improved distortion index method based on the distortion index, which is good at detecting abnormal data. The use of improved distortion index method to detect false data injection attacks can make up for the defect of the lack of universality of traditional detection methods, and meet the requirements of anomaly detection efficiency. Finally, based on the MATLAB power simulation test system, experimental simulation is carried out to verify the effectiveness and universality of the proposed method for false data injection attack detection.
Lu, Xiao, Jing, Jiangping, Wu, Yi.  2020.  False Data Injection Attack Location Detection Based on Classification Method in Smart Grid. 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). :133—136.
The state estimation technology is utilized to estimate the grid state based on the data of the meter and grid topology structure. The false data injection attack (FDIA) is an information attack method to disturb the security of the power system based on the meter measurement. Current FDIA detection researches pay attention on detecting its presence. The location information of FDIA is also important for power system security. In this paper, locating the FDIA of the meter is regarded as a multi-label classification problem. Each label represents the state of the corresponding meter. The ensemble model, the multi-label decision tree algorithm, is utilized as the classifier to detect the exact location of the FDIA. This method does not need the information of the power topology and statistical knowledge assumption. The numerical experiments based on the IEEE-14 bus system validates the performance of the proposed method.
2021-06-24
Maneebang, Kotchakorn, Methapatara, Kanokpol, Kudtongngam, Jasada.  2020.  A Demand Side Management Solution: Fully Automated Demand Response using OpenADR2.0b Coordinating with BEMS Pilot Project. 2020 International Conference on Smart Grids and Energy Systems (SGES). :30–35.
Per the National Energy Policy, Demand Side Management (DSM) is one of the energy conservations that performs a function to manage electric power of demand-side resources. One of the DSM solutions is a demand response program, which is a part of Thailand Smart Grid Action Plan 2017 - 2021. Demand response program such as peak demand reduction plays a role in both the management of the electricity crisis and enhance energy security. This paper presents a pilot project for a fully automated demand response program at MEA Rat Burana District Office. The system is composed of a Building Energy Management System (BEMS) with Demand Response Client gateway and 5 energy controllers at the air conditioner by using the OpenADR2.0b protocol. Also, this concept leads to automatic or semi-automatic demand response program in the future. The result shows the total energy consumption reduction for air conditioners by 53.5%. The future works to be carried out are to implement into other MEA District Office such as Khlong Toei, Yan Nawa and Bang Khun Thian and to test with a Load Aggregator Management System (LAMS).