Visible to the public Biblio

Filters: Keyword is image processing  [Clear All Filters]
2020-06-26
M, Raviraja Holla, D, Suma.  2019.  Memory Efficient High-Performance Rotational Image Encryption. 2019 International Conference on Communication and Electronics Systems (ICCES). :60—64.

Image encryption is an essential part of a Visual Cryptography. Existing traditional sequential encryption techniques are infeasible to real-time applications. High-performance reformulations of such methods are increasingly growing over the last decade. These reformulations proved better performances over their sequential counterparts. A rotational encryption scheme encrypts the images in such a way that the decryption is possible with the rotated encrypted images. A parallel rotational encryption technique makes use of a high-performance device. But it less-leverages the optimizations offered by them. We propose a rotational image encryption technique which makes use of memory coalescing provided by the Compute Unified Device Architecture (CUDA). The proposed scheme achieves improved global memory utilization and increased efficiency.

Ahmad, Jawad, Tahir, Ahsen, Khan, Jan Sher, Khan, Muazzam A, Khan, Fadia Ali, Arshad, Habib, Zeeshan.  2019.  A Partial Ligt-weight Image Encryption Scheme. 2019 UK/ China Emerging Technologies (UCET). :1—3.

Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.

2020-06-15
Puteaux, Pauline, Puech, William.  2018.  Noisy Encrypted Image Correction based on Shannon Entropy Measurement in Pixel Blocks of Very Small Size. 2018 26th European Signal Processing Conference (EUSIPCO). :161–165.
Many techniques have been presented to protect image content confidentiality. The owner of an image encrypts it using a key and transmits the encrypted image across a network. If the recipient is authorized to access the original content of the image, he can reconstruct it losslessly. However, if during the transmission the encrypted image is noised, some parts of the image can not be deciphered. In order to localize and correct these errors, we propose an approach based on the local Shannon entropy measurement. We first analyze this measure as a function of the block-size. We provide then a full description of our blind error localization and removal process. Experimental results show that the proposed approach, based on local entropy, can be used in practice to correct noisy encrypted images, even with blocks of very small size.
2020-02-18
Chen, Jiefeng, Wu, Xi, Rastogi, Vaibhav, Liang, Yingyu, Jha, Somesh.  2019.  Towards Understanding Limitations of Pixel Discretization Against Adversarial Attacks. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :480–495.

Wide adoption of artificial neural networks in various domains has led to an increasing interest in defending adversarial attacks against them. Preprocessing defense methods such as pixel discretization are particularly attractive in practice due to their simplicity, low computational overhead, and applicability to various systems. It is observed that such methods work well on simple datasets like MNIST, but break on more complicated ones like ImageNet under recently proposed strong white-box attacks. To understand the conditions for success and potentials for improvement, we study the pixel discretization defense method, including more sophisticated variants that take into account the properties of the dataset being discretized. Our results again show poor resistance against the strong attacks. We analyze our results in a theoretical framework and offer strong evidence that pixel discretization is unlikely to work on all but the simplest of the datasets. Furthermore, our arguments present insights why some other preprocessing defenses may be insecure.

2020-02-17
Tunde-Onadele, Olufogorehan, He, Jingzhu, Dai, Ting, Gu, Xiaohui.  2019.  A Study on Container Vulnerability Exploit Detection. 2019 IEEE International Conference on Cloud Engineering (IC2E). :121–127.
Containers have become increasingly popular for deploying applications in cloud computing infrastructures. However, recent studies have shown that containers are prone to various security attacks. In this paper, we conduct a study on the effectiveness of various vulnerability detection schemes for containers. Specifically, we implement and evaluate a set of static and dynamic vulnerability attack detection schemes using 28 real world vulnerability exploits that widely exist in docker images. Our results show that the static vulnerability scanning scheme only detects 3 out of 28 tested vulnerabilities and dynamic anomaly detection schemes detect 22 vulnerability exploits. Combining static and dynamic schemes can further improve the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time window before attacks succeed) for a group of commonly seen attacks in containers that try to gain a shell and execute arbitrary code.
2020-02-10
Ruchkin, Vladimir, Fulin, Vladimir, Pikulin, Dmitry, Taganov, Aleksandr, Kolesenkov, Aleksandr, Ruchkina, Ekaterina.  2019.  Heterogenic Multi-Core System on Chip for Virtual Based Security. 2019 8th Mediterranean Conference on Embedded Computing (MECO). :1–5.
The paper describes the process of coding information in the heterogenic multi-core system on chip for virtual-based security designed For image processing, signal processing and neural networks emulation. The coding of information carried out in assembly language according to the GOST. This is an implementation of the GOST - a standard symmetric key block cipher has a 64-bit block size and 256-bit key size.
Zubov, Ilya G., Lysenko, Nikolai V., Labkov, Gleb M..  2019.  Detection of the Information Hidden in Image by Convolutional Neural Networks. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :393–394.

This article shows the possibility of detection of the hidden information in images. This is the approach to steganalysis than the basic data about the image and the information about the hiding method of the information are unknown. The architecture of the convolutional neural network makes it possible to detect small changes in the image with high probability.

Sharifzadeh, Mehdi, Aloraini, Mohammed, Schonfeld, Dan.  2019.  Quantized Gaussian Embedding Steganography. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2637–2641.

In this paper, we develop a statistical framework for image steganography in which the cover and stego messages are modeled as multivariate Gaussian random variables. By minimizing the detection error of an optimal detector within the generalized adopted statistical model, we propose a novel Gaussian embedding method. Furthermore, we extend the formulation to cost-based steganography, resulting in a universal embedding scheme that works with embedding costs as well as variance estimators. Experimental results show that the proposed approach avoids embedding in smooth regions and significantly improves the security of the state-of-the-art methods, such as HILL, MiPOD, and S-UNIWARD.

2020-01-07
Aparna, H., Bhoomija, Faustina, Devi, R. Santhiya, Thenmozhi, K., Amirtharajan, Rengarajan, Praveenkumar, Padmapriya.  2019.  Image Encryption Based on Quantum-Assisted DNA Coded System. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1-4.

Information security is winding up noticeably more vital in information stockpiling and transmission. Images are generally utilised for various purposes. As a result, the protection of image from the unauthorised client is critical. Established encryption techniques are not ready to give a secure framework. To defeat this, image encryption is finished through DNA encoding which is additionally included with confused 1D and 2D logistic maps. The key communication is done through the quantum channel using the BB84 protocol. To recover the encrypted image DNA decoding is performed. Since DNA encryption is invertible, decoding can be effectively done through DNA subtraction. It decreases the complexity and furthermore gives more strength when contrasted with traditional encryption plans. The enhanced strength of the framework is measured utilising measurements like NPCR, UACI, Correlation and Entropy.

2019-09-23
Aydin, Y., Ozkaynak, F..  2019.  A Provable Secure Image Encryption Schema Based on Fractional Order Chaotic Systems. 2019 23rd International Conference Electronics. :1–5.
In the literature, many chaotic systems have been used in the design of image encryption algorithms. In this study, an application of fractional order chaotic systems is investigated. The aim of the study is to improve the disadvantageous aspects of existing methods based on discrete and continuous time chaotic systems by utilizing the features of fractional order chaotic systems. The most important advantage of the study compared to the literature is that the proposed encryption algorithm is designed with a provable security approach. Analyses results have been shown that the proposed method can be used successfully in many information security applications.
2019-05-01
Chen, D., Chen, W., Chen, J., Zheng, P., Huang, J..  2018.  Edge Detection and Image Segmentation on Encrypted Image with Homomorphic Encryption and Garbled Circuit. 2018 IEEE International Conference on Multimedia and Expo (ICME). :1-6.

Edge detection is one of the most important topics of image processing. In the scenario of cloud computing, performing edge detection may also consider privacy protection. In this paper, we propose an edge detection and image segmentation scheme on an encrypted image with Sobel edge detector. We implement Gaussian filtering and Sobel operator on the image in the encrypted domain with homomorphic property. By implementing an adaptive threshold decision algorithm in the encrypted domain, we obtain a threshold determined by the image distribution. With the technique of garbled circuit, we perform comparison in the encrypted domain and obtain the edge of the image without decrypting the image in advanced. We then propose an image segmentation scheme on the encrypted image based on the detected edges. Our experiments demonstrate the viability and effectiveness of the proposed encrypted image edge detection and segmentation.

Rayavel, P., Rathnavel, P., Bharathi, M., Kumar, T. Siva.  2018.  Dynamic Traffic Control System Using Edge Detection Algorithm. 2018 International Conference on Soft-Computing and Network Security (ICSNS). :1-5.

As the traffic congestion increases on the transport network, Payable on the road to slower speeds, longer falter times, as a consequence bigger vehicular queuing, it's necessary to introduce smart way to reduce traffic. We are already edging closer to ``smart city-smart travel''. Today, a large number of smart phone applications and connected sat-naves will help get you to your destination in the quickest and easiest manner possible due to real-time data and communication from a host of sources. In present situation, traffic lights are used in each phase. The other way is to use electronic sensors and magnetic coils that detect the congestion frequency and monitor traffic, but found to be more expensive. Hence we propose a traffic control system using image processing techniques like edge detection. The vehicles will be detected using images instead of sensors. The cameras are installed alongside of the road and it will capture image sequence for every 40 seconds. The digital image processing techniques will be applied to analyse and process the image and according to that the traffic signal lights will be controlled.

2019-03-22
Azzaz, M. S., Tanougast, C., Maali, A., Benssalah, M..  2018.  Hardware Implementation of Multi-Scroll Chaos Based Architecture for Securing Biometric Templates. 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT). :227-231.

In spite of numerous advantages of biometrics-based personal authentication systems over traditional security systems based on token or knowledge, they are vulnerable to attacks that can decrease their security considerably. In this paper, we propose a new hardware solution to protect biometric templates such as fingerprint. The proposed scheme is based on chaotic N × N grid multi-scroll system and it is implemented on Xilinx FPGA. The hardware implementation is achieved by applying numerical solution methods in our study, we use EM (Euler Method). Simulation and experimental results show that the proposed scheme allows a low cost image encryption for embedded systems while still providing a good trade-off between performance and hardware resources. Indeed, security analysis performed to the our scheme, is strong against known different attacks, such as: brute force, statistical, differential, and entropy. Therefore, the proposed chaos-based multiscroll encryption algorithm is suitable for use in securing embedded biometric systems.

2019-02-22
Mutiarachim, A., Pranata, S. Felix, Ansor, B., Shidik, G. Faiar, Fanani, A. Zainul, Soeleman, A., Pramunendar, R. Anggi.  2018.  Bit Localization in Least Significant Bit Using Fuzzy C-Means. 2018 International Seminar on Application for Technology of Information and Communication. :290-294.

Least Significant Bit (LSB) as one of steganography methods that already exist today is really mainstream because easy to use, but has weakness that is too easy to decode the hidden message. It is because in LSB the message embedded evenly to all pixels of an image. This paper introduce a method of steganography that combine LSB with clustering method that is Fuzzy C-Means (FCM). It is abbreviated with LSB\_FCM, then compare the stegano result with LSB method. Each image will divided into two cluster, then the biggest cluster capacity will be choosen, finally save the cluster coordinate key as place for embedded message. The key as a reference when decode the message. Each image has their own cluster capacity key. LSB\_FCM has disadvantage that is limited place to embedded message, but it also has advantages compare with LSB that is LSB\_FCM have more difficulty level when decrypted the message than LSB method, because in LSB\_FCM the messages embedded randomly in the best cluster pixel of an image, so to decrypted people must have the cluster coordinate key of the image. Evaluation result show that the MSE and PSNR value of LSB\_FCM some similiar with the pure LSB, it means that LSB\_FCM can give imperceptible image as good as the pure LSB, but have better security from the embedding place.

2019-02-08
Lee, D. ', La, W. Gyu, Kim, H..  2018.  Drone Detection and Identification System Using Artificial Intelligence. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1131-1133.

As drone attracts much interest, the drone industry has opened their market to ordinary people, making drones to be used in daily lives. However, as it got easier for drone to be used by more people, safety and security issues have raised as accidents are much more likely to happen: colliding into people by losing control or invading secured properties. For safety purposes, it is essential for observers and drone to be aware of an approaching drone. In this paper, we introduce a comprehensive drone detection system based on machine learning. This system is designed to be operable on drones with camera. Based on the camera images, the system deduces location on image and vendor model of drone based on machine classification. The system is actually built with OpenCV library. We collected drone imagery and information for learning process. The system's output shows about 89 percent accuracy.

2019-01-31
Bak, D., Mazurek, P..  2018.  Air-Gap Data Transmission Using Screen Brightness Modulation. 2018 International Interdisciplinary PhD Workshop (IIPhDW). :147–150.

Air-gap data is important for the security of computer systems. The injection of the computer virus is limited but possible, however data communication channel is necessary for the transmission of stolen data. This paper considers BFSK digital modulation applied to brightness changes of screen for unidirectional transmission of valuable data. Experimental validation and limitations of the proposed technique are provided.

2018-12-03
Sharifara, Ali, Rahim, Mohd Shafry Mohd, Navabifar, Farhad, Ebert, Dylan, Ghaderi, Amir, Papakostas, Michalis.  2017.  Enhanced Facial Recognition Framework Based on Skin Tone and False Alarm Rejection. Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments. :240–241.

Human face detection plays an essential role in the first stage of face processing applications. In this study, an enhanced face detection framework is proposed to improve detection rate based on skin color and provide a validation process. A preliminary segmentation of the input images based on skin color can significantly reduce search space and accelerate the process of human face detection. The primary detection is based on Haar-like features and the Adaboost algorithm. A validation process is introduced to reject non-face objects, which might occur during the face detection process. The validation process is based on two-stage Extended Local Binary Patterns. The experimental results on the CMU-MIT and Caltech 10000 datasets over a wide range of facial variations in different colors, positions, scales, and lighting conditions indicated a successful face detection rate.

2018-11-19
Shinya, A., Tung, N. D., Harada, T., Thawonmas, R..  2017.  Object-Specific Style Transfer Based on Feature Map Selection Using CNNs. 2017 Nicograph International (NicoInt). :88–88.

We propose a method for transferring an arbitrary style to only a specific object in an image. Style transfer is the process of combining the content of an image and the style of another image into a new image. Our results show that the proposed method can realize style transfer to specific object.

Gharsallaoui, R., Hamdi, M., Kim, T..  2017.  A Novel Privacy Technique for Augmented Reality Cloud Gaming Based on Image Authentication. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :252–257.

The evolution of cloud gaming systems is substantially the security requirements for computer games. Although online game development often utilizes artificial intelligence and human computer interaction, game developers and providers often do not pay much attention to security techniques. In cloud gaming, location-based games are augmented reality games which take the original principals of the game and applies them to the real world. In other terms, it uses the real world to impact the game experience. Because the execution of such games is distributed in cloud computing, users cannot be certain where their input and output data are managed. This introduces the possibility to input incorrect data in the exchange between the gamer's terminal and the gaming platform. In this context, we propose a new gaming concept for augmented reality and location-based games in order to solve the aforementioned cheating scenario problem. The merit of our approach is to establish an accurate and verifiable proof that the gamer reached the goal or found the target. The major novelty in our method is that it allows the gamer to submit an authenticated proof related to the game result without altering the privacy of positioning data.

2018-09-12
Sachdeva, A., Kapoor, R., Sharma, A., Mishra, A..  2017.  Categorical Classification and Deletion of Spam Images on Smartphones Using Image Processing and Machine Learning. 2017 International Conference on Machine Learning and Data Science (MLDS). :23–30.

We regularly use communication apps like Facebook and WhatsApp on our smartphones, and the exchange of media, particularly images, has grown at an exponential rate. There are over 3 billion images shared every day on Whatsapp alone. In such a scenario, the management of images on a mobile device has become highly inefficient, and this leads to problems like low storage, manual deletion of images, disorganization etc. In this paper, we present a solution to tackle these issues by automatically classifying every image on a smartphone into a set of predefined categories, thereby segregating spam images from them, allowing the user to delete them seamlessly.

2018-06-20
Kosmidis, Konstantinos, Kalloniatis, Christos.  2017.  Machine Learning and Images for Malware Detection and Classification. Proceedings of the 21st Pan-Hellenic Conference on Informatics. :5:1–5:6.

Detecting malicious code with exact match on collected datasets is becoming a large-scale identification problem due to the existence of new malware variants. Being able to promptly and accurately identify new attacks enables security experts to respond effectively. My proposal is to develop an automated framework for identification of unknown vulnerabilities by leveraging current neural network techniques. This has a significant and immediate value for the security field, as current anti-virus software is typically able to recognize the malware type only after its infection, and preventive measures are limited. Artificial Intelligence plays a major role in automatic malware classification: numerous machine-learning methods, both supervised and unsupervised, have been researched to try classifying malware into families based on features acquired by static and dynamic analysis. The value of automated identification is clear, as feature engineering is both a time-consuming and time-sensitive task, with new malware studied while being observed in the wild.

2018-04-04
Bao, D., Yang, F., Jiang, Q., Li, S., He, X..  2017.  Block RLS algorithm for surveillance video processing based on image sparse representation. 2017 29th Chinese Control And Decision Conference (CCDC). :2195–2200.

Block recursive least square (BRLS) algorithm for dictionary learning in compressed sensing system is developed for surveillance video processing. The new method uses image blocks directly and iteratively to train dictionaries via BRLS algorithm, which is different from classical methods that require to transform blocks to columns first and then giving all training blocks at one time. Since the background in surveillance video is almost fixed, the residual of foreground can be represented sparsely and reconstructed with background subtraction directly. The new method and framework are applied in real image and surveillance video processing. Simulation results show that the new method achieves better representation performance than classical ones in both image and surveillance video.

2018-03-19
Pirkl, Jutta, Becher, Andreas, Echavarria, Jorge, Teich, Jürgen, Wildermann, Stefan.  2017.  Self-Adaptive FPGA-Based Image Processing Filters Using Approximate Arithmetics. Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems. :89–92.

Approximate Computing aims at trading off computational accuracy against improvements regarding performance, resource utilization and power consumption by making use of the capability of many applications to tolerate a certain loss of quality. A key issue is the dependency of the impact of approximation on the input data as well as user preferences and environmental conditions. In this context, we therefore investigate the concept of self-adaptive image processing that is able to autonomously adapt 2D-convolution filter operators of different accuracy degrees by means of partial reconfiguration on Field-Programmable-Gate-Arrays (FPGAs). Experimental evaluation shows that the dynamic system is able to better exploit a given error tolerance than any static approximation technique due to its responsiveness to changes in input data. Additionally, it provides a user control knob to select the desired output quality via the metric threshold at runtime.

2018-02-15
Yonetani, R., Boddeti, V. N., Kitani, K. M., Sato, Y..  2017.  Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption. 2017 IEEE International Conference on Computer Vision (ICCV). :2059–2069.

We propose a privacy-preserving framework for learning visual classifiers by leveraging distributed private image data. This framework is designed to aggregate multiple classifiers updated locally using private data and to ensure that no private information about the data is exposed during and after its learning procedure. We utilize a homomorphic cryptosystem that can aggregate the local classifiers while they are encrypted and thus kept secret. To overcome the high computational cost of homomorphic encryption of high-dimensional classifiers, we (1) impose sparsity constraints on local classifier updates and (2) propose a novel efficient encryption scheme named doublypermuted homomorphic encryption (DPHE) which is tailored to sparse high-dimensional data. DPHE (i) decomposes sparse data into its constituent non-zero values and their corresponding support indices, (ii) applies homomorphic encryption only to the non-zero values, and (iii) employs double permutations on the support indices to make them secret. Our experimental evaluation on several public datasets shows that the proposed approach achieves comparable performance against state-of-the-art visual recognition methods while preserving privacy and significantly outperforms other privacy-preserving methods.

2018-02-02
Abura'ed, Nour, Khan, Faisal Shah, Bhaskar, Harish.  2017.  Advances in the Quantum Theoretical Approach to Image Processing Applications. ACM Comput. Surv.. 49:75:1–75:49.
In this article, a detailed survey of the quantum approach to image processing is presented. Recently, it has been established that existing quantum algorithms are applicable to image processing tasks allowing quantum informational models of classical image processing. However, efforts continue in identifying the diversity of its applicability in various image processing domains. Here, in addition to reviewing some of the critical image processing applications that quantum mechanics have targeted, such as denoising, edge detection, image storage, retrieval, and compression, this study will also highlight the complexities in transitioning from the classical to the quantum domain. This article shall establish theoretical fundamentals, analyze performance and evaluation, draw key statistical evidence to support claims, and provide recommendations based on published literature mostly during the period from 2010 to 2015.