Visible to the public Biblio

Found 144 results

Filters: Keyword is vehicular ad hoc networks  [Clear All Filters]
2020-12-14
Boualouache, A., Soua, R., Engel, T..  2020.  SDN-based Misbehavior Detection System for Vehicular Networks. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
Vehicular networks are vulnerable to a variety of internal attacks. Misbehavior Detection Systems (MDS) are preferred over the cryptography solutions to detect such attacks. However, the existing misbehavior detection systems are static and do not adapt to the context of vehicles. To this end, we exploit the Software-Defined Networking (SDN) paradigm to propose a context-aware MDS. Based on the context, our proposed system can tune security parameters to provide accurate detection with low false positives. Our system is Sybil attack-resistant and compliant with vehicular privacy standards. The simulation results show that, under different contexts, our system provides a high detection ratio and low false positives compared to a static MDS.
Lim, K., Islam, T., Kim, H., Joung, J..  2020.  A Sybil Attack Detection Scheme based on ADAS Sensors for Vehicular Networks. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–5.
Vehicular Ad Hoc Network (VANET) is a promising technology for autonomous driving as it provides many benefits and user conveniences to improve road safety and driving comfort. Sybil attack is one of the most serious threats in vehicular communications because attackers can generate multiple forged identities to disseminate false messages to disrupt safety-related services or misuse the systems. To address this issue, we propose a Sybil attack detection scheme using ADAS (Advanced Driving Assistant System) sensors installed on modern passenger vehicles, without the assistance of trusted third party authorities or infrastructure. Also, a deep learning based object detection technique is used to accurately identify nearby objects for Sybil attack detection and the multi-step verification process minimizes the false positive of the detection.
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
2020-12-07
Allig, C., Leinmüller, T., Mittal, P., Wanielik, G..  2019.  Trustworthiness Estimation of Entities within Collective Perception. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The idea behind collective perception is to improve vehicles' awareness about their surroundings. Every vehicle shares information describing its perceived environment by means of V2X communication. Similar to other information shared using V2X communication, collective perception information is potentially safety relevant, which means there is a need to assess the reliability and quality of received information before further processing. Transmitted information may have been forged by attackers or contain inconsistencies e.g. caused by malfunctions. This paper introduces a novel approach for estimating a belief that a pair of entities, e.g. two remote vehicles or the host vehicle and a remote vehicle, within a Vehicular ad hoc Network (VANET) are both trustworthy. The method updates the belief based on the consistency of the data that both entities provide. The evaluation shows that the proposed method is able to identify forged information.
More, P. H., Dongre, M. M..  2019.  Partially Predictable Vehicular Ad-hoc Network: Trustworthiness and Security. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). :1–5.
VANET is an emerging technology incorporating ad hoc network to accomplish intelligent communications between vehicles, improvement in road traffic efficiency and safety. In some situations movement of vehicles is in a certain range, over particular distance or just in a specific tendency. Such a network can be called as incompletely or partially predictable network. An efficient use of such network, position and motion of nodes as well as relative history in big data is an open issue in vehicular ad hoc network. A hybrid protocol which provides secure and trustworthiness evaluation based routing can be used in VANET. Here Secure Trustworthiness Evaluation Based Routing Protocol is implemented using NS2 software. Its performance is very good in terms of the Average End to End Delay, Packet Delivery Ratio and Normalized Routing Overhead.
2020-11-23
Jolfaei, A., Kant, K., Shafei, H..  2019.  Secure Data Streaming to Untrusted Road Side Units in Intelligent Transportation System. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :793–798.
The paper considers data security issues in vehicle-to-infrastructure communications, where vehicles stream data to a road side unit. We assume aggregated data in road side units can be stored or used for data analytics. In this environment, there are issues in regards to the scalability of key management and computation limitations at the edge of the network. To address these issues, we suggest the formation of groups in the vehicle layer, where a group leader is assigned to communicate with group devices and the road side unit. We propose a lightweight permutation mechanism for preserving the confidentiality of sensory data.
Singh, M., Kim, S..  2018.  Crypto trust point (cTp) for secure data sharing among intelligent vehicles. 2018 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Tremendous amount of research is going on in the field of Intelligent vehicles (IVs)in industries and academics. Although, IV supports a better convenience for the society, but it also suffers from some concerns. Security is the major concern in Intelligent vehicle technology, due to its high exposure to data and information communication. The environment of the IV communication has many security vulnerabilities, which cannot be solved by Traditional Security approaches due to their fixed capabilities. Among security, trust, data accuracy and reliability of communication data in the communication channel are the other issues in IV communication. Blockchain is a peer-to-peer, distributed and decentralized technology which is used by the digital currency Bit-coin, to build trust and reliability and it has capability and is feasible to use Blockchain in IV Communication. In this paper, we propose, Blockchain based crypto Trust point (cTp) mechanism for IV communication. Using cTp in the IVs communication environment can provide IV data security and reliability. cTp mechanism accounts for the legitimate and illegitimate vehicles behavior, and rewarding thereby building trust among the vehicles. We also propose a reward based system using cTp (exchange of some cTp among IVs, during successful communication). We use blockchain technology in the Intelligent Transportation System (ITS) for the data management of the cTp. Using ITS, cTp details of every vehicle can be accessed ubiquitously by IVs. We evaluation, our proposal using the intersection use case scenario for intelligent vehicles communication.
2020-11-02
Ma, Y., Bai, X..  2019.  Comparison of Location Privacy Protection Schemes in VANETs. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:79–83.
Vehicular Ad-hoc Networks (VANETs) is a traditional mobile ad hoc network (MANET) used on traffic roads and it is a special mobile ad hoc network. As an intelligent transportation system, VANETs can solve driving safety and provide value-added services. Therefore, the application of VANETs can improve the safety and efficiency of road traffic. Location services are in a crucial position for the development of VANETs. VANETs has the characteristics of open access and wireless communication. Malicious node attacks may lead to the leakage of user privacy in VANETs, thus seriously affecting the use of VANETs. Therefore, the location privacy issue of VANETs cannot be ignored. This paper classifies the attack methods in VANETs, and summarizes and compares the location privacy protection techniques proposed in the existing research.
Xiong, Wenjie, Shan, Chun, Sun, Zhaoliang, Meng, Qinglei.  2018.  Real-time Processing and Storage of Multimedia Data with Content Delivery Network in Vehicle Monitoring System. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1—4.

With the rapid development of the Internet of vehicles, there is a huge amount of multimedia data becoming a hidden trouble in the Internet of Things. Therefore, it is necessary to process and store them in real time as a way of big data curation. In this paper, a method of real-time processing and storage based on CDN in vehicle monitoring system is proposed. The MPEG-DASH standard is used to process the multimedia data by dividing them into MPD files and media segments. A real-time monitoring system of vehicle on the basis of the method introduced is designed and implemented.

Singh, Dhananjay, Tripathi, Gaurav, Shah, Sayed Chhattan, da Rosa Righi, Rodrigo.  2018.  Cyber physical surveillance system for Internet of Vehicles. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :546—551.

Internet of Vehicle (IoV) is an essential part of the Intelligent Transportation system (ITS) which is growing exponentially in the automotive industry domain. The term IoV is used in this paper for Internet of Vehicles. IoV is conceptualized for sharing traffic, safety and several other vehicle-related information between vehicles and end user. In recent years, the number of connected vehicles has increased allover the world. Having information sharing and connectivity as its advantage, IoV also faces the challenging task in the cybersecurity-related matters. The future consists of crowded places in an interconnected world through wearable's, sensors, smart phones etc. We are converging towards IoV technology and interactions with crowded space of connected peoples. However, this convergence demands high-security mechanism from the connected crowd as-well-as other connected vehicles to safeguard of proposed IoV system. In this paper, we coin the term of smart people crowd (SPC) and the smart vehicular crowd (SVC) for the Internet of Vehicles (IoV). These specific crowds of SPC and SVC are the potential cyber attackers of the smart IoV. People connected to the internet in the crowded place are known as a smart crowd. They have interfacing devices with sensors and the environment. A smart crowd would also consist of the random number of smart vehicles. With the future converging in to the smart connected framework for crowds, vehicles and connected vehicles, we present a novel cyber-physical surveillance system (CPSS) framework to tackle the security threats in the crowded environment for the smart automotive industry and provide the cyber security mechanism in the crowded places. We also describe an overview of use cases and their security challenges on the Internet of Vehicles.

Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.

Sahbi, Roumissa, Ghanemi, Salim, Djouani, Ramissa.  2018.  A Network Model for Internet of vehicles based on SDN and Cloud Computing. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1—4.

Internet of vehicles (IoV) is the evolution of conventional vehicle network (VANET), a recent domain attracting a large number of companies and researchers. It is an integration of three networks: an inter-vehicle network, an intra-vehicle network, and vehicular mobile Internet, in which the vehicle is considered as a smart object equipped with powerful multi-sensors platform, connectivity and communication technologies, enabling it to communicate with the world. The cooperative communication between vehicles and other devices causes diverse challenges in terms of: storage and computing capability, energy of vehicle and network's control and management. Security is very important aspect in IoV and it is required to protect connected cars from cybercrime and accidents. In this article, we propose a network model for IoV based on software Defined Network and Cloud Computing.

2020-10-29
Tomar, Ravi, Awasthi, Yogesh.  2019.  Prevention Techniques Employed in Wireless Ad-Hoc Networks. 2019 International Conference on Advanced Science and Engineering (ICOASE). :192—197.
The paper emphasizes the various aspects of ad-hoc networks. The different types of attacks that affect the system and are prevented by various algorithms mentioned in this paper. Since Ad-hoc wireless networks have no infrastructure and are always unreliable therefore they are subject to many attacks. The black hole attack is seen as one of the dangerous attacks of them. In this attack the malicious node usually absorbs each data packets that are similar to separate holes in everything. Likewise all packets in the network are dropped. For this reason various prevention measures should be employed in the form of routing finding first then the optimization followed by the classification.
Kaur, Jasleen, Singh, Tejpreet, Lakhwani, Kamlesh.  2019.  An Enhanced Approach for Attack Detection in VANETs Using Adaptive Neuro-Fuzzy System. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :191—197.
Vehicular Ad-hoc Networks (VANETs) are generally acknowledged as an extraordinary sort of Mobile Ad hoc Network (MANET). VANETs have seen enormous development in a decade ago, giving a tremendous scope of employments in both military and in addition non-military personnel exercises. The temporary network in the vehicles can likewise build the driver's capability on the road. In this paper, an effective information dispersal approach is proposed which enhances the vehicle-to-vehicle availability as well as enhances the QoS between the source and the goal. The viability of the proposed approach is shown with regards to the noteworthy gets accomplished in the parameters in particular, end to end delay, packet drop ratio, average download delay and throughput in comparison with the existing approaches.
Kumar, Sushil, Mann, Kulwinder Singh.  2019.  Prevention of DoS Attacks by Detection of Multiple Malicious Nodes in VANETs. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :89—94.

Vehicular Adhoc Network (VANET), a specialized form of MANET in which safety is the major concern as critical information related to driver's safety and assistance need to be disseminated between the vehicle nodes. The security of the nodes can be increased, if the network availability is increased. The availability of the network is decreased, if there is Denial of Service Attacks (DoS) in the network. In this paper, a packet detection algorithm for the prevention of DoS attacks is proposed. This algorithm will be able to detect the multiple malicious nodes in the network which are sending irrelevant packets to jam the network and that will eventually stop the network to send the safety messages. The proposed algorithm was simulated in NS-2 and the quantitative values of packet delivery ratio, packet loss ratio, network throughput proves that the proposed algorithm enhance the security of the network by detecting the DoS attack well in time.

2020-10-26
Li, Qingyuan, Wu, Hao, Liu, Lei, Pan, Bin, Dong, Lan.  2018.  A Group based Dynamic Mix Zone Scheme for Location Privacy Preservation in VANETs. 2018 Third International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–5.
Modern vehicles are equipped with wireless communication technologies, allowing them to communicate with each other. Through Dedicated Short Range Communication (DSRC), vehicles periodically broadcast beacons messages for safety applications, which gives rise to disclosure of location privacy. A way to protect vehicles location privacy is to have their pseudonyms changed frequently. With restrict to limited resources (such as computation and storage), we propose a group based dynamic mix zone scheme, in which vehicles form a group when their pseudonyms are close to expire. Simulation results confirm that the proposed scheme can protect location privacy and alleviate the storage burden.
2020-10-19
Peng, Ruxiang, Li, Weishi, Yang, Tao, Huafeng, Kong.  2019.  An Internet of Vehicles Intrusion Detection System Based on a Convolutional Neural Network. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1595–1599.
With the continuous development of the Internet of Vehicles, vehicles are no longer isolated nodes, but become a node in the car network. The open Internet will introduce traditional security issues into the Internet of Things. In order to ensure the safety of the networked cars, we hope to set up an intrusion detection system (IDS) on the vehicle terminal to detect and intercept network attacks. In our work, we designed an intrusion detection system for the Internet of Vehicles based on a convolutional neural network, which can run in a low-powered embedded vehicle terminal to monitor the data in the car network in real time. Moreover, for the case of packet encryption in some car networks, we have also designed a separate version for intrusion detection by analyzing the packet header. Experiments have shown that our system can guarantee high accuracy detection at low latency for attack traffic.
Indira, K, Ajitha, P, Reshma, V, Tamizhselvi, A.  2019.  An Efficient Secured Routing Protocol for Software Defined Internet of Vehicles. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). :1–4.
Vehicular ad hoc network is one of most recent research areas to deploy intelligent Transport System. Due to their highly dynamic topology, energy constrained and no central point coordination, routing with minimal delay, minimal energy and maximize throughput is a big challenge. Software Defined Networking (SDN) is new paradigm to improve overall network lifetime. It incorporates dynamic changes with minimal end-end delay, and enhances network intelligence. Along with this, intelligence secure routing is also a major constraint. This paper proposes a novel approach to Energy efficient secured routing protocol for Software Defined Internet of vehicles using Restricted Boltzmann Algorithm. This algorithm is to detect hostile routes with minimum delay, minimum energy and maximum throughput compared with traditional routing protocols.
Sharma, Sachin, Ghanshala, Kamal Kumar, Mohan, Seshadri.  2019.  Blockchain-Based Internet of Vehicles (IoV): An Efficient Secure Ad Hoc Vehicular Networking Architecture. 2019 IEEE 2nd 5G World Forum (5GWF). :452–457.
With the transformation of connected vehicles into the Internet of Vehicles (IoV), the time is now ripe for paving the way for the next generation of connected vehicles with novel applications and innovative security measures. The connected vehicles are experiencing prenominal growth in the auto industry, but are still studded with many security and privacy vulnerabilities. Today's IoV applications are part of cyber physical communication systems that collect useful information from thousands of smart sensors associated with the connected vehicles. The technology advancement has paved the way for connected vehicles to share significant information among drivers, auto manufacturers, auto insurance companies and operational and maintenance service providers for various applications. The critical issues in engineering the IoV applications are effective to use of the available spectrum and effective allocation of good channels an opportunistic manner to establish connectivity among vehicles, and the effective utilization of the infrastructure under various traffic conditions. Security and privacy in information sharing are the main concerns in a connected vehicle communication network. Blockchain technology facilitates secured communication among users in a connected vehicles network. Originally, blockchain technology was developed and employed with the cryptocurrency. Bitcoin, to provide increased trust, reliability, and security among users based on peer-to-peer networks for transaction sharing. In this paper, we propose to integrate blockchain technology into ad hoc vehicular networking so that the vehicles can share network resources with increased trust, reliability, and security using distributed access control system and can benefit a wider scope of scalable IoV applications scenarios for decision making. The proposed architecture is the faithful environment for information sharing among connected vehicles. Blockchain technology allows multiple copies of data storage at the distribution cloud. Distributed access control system is significantly more secure than a traditional centralized system. This paper also describes how important of ad hoc vehicular networking in human life, possibilities in real-world implementation and its future trends. The ad hoc vehicular networking may become one of the most trendy networking concepts in the future that has the perspective to bring out much ease human beneficial and secured applications.
Engoulou, Richard Gilles, Bellaiche, Martine, Halabi, Talal, Pierre, Samuel.  2019.  A Decentralized Reputation Management System for Securing the Internet of Vehicles. 2019 International Conference on Computing, Networking and Communications (ICNC). :900–904.
The evolution of the Internet of Vehicles (IoV) paradigm has recently attracted a lot of researchers and industries. Vehicular Ad Hoc Networks (VANET) is the networking model that lies at the heart of this technology. It enables the vehicles to exchange relevant information concerning road conditions and safety. However, ensuring communication security has been and still is one of the main challenges to vehicles' interconnection. To secure the interconnected vehicular system, many cryptography techniques, communication protocols, and certification and reputation-based security approaches were proposed. Nonetheless, some limitations are still present, preventing the practical implementation of such approaches. In this paper, we first define a set of locally-perceived behavioral reputation parameters that enable a distributed evaluation of vehicles' reputation. Then, we integrate these parameters into the design of a reputation management system to exclude malicious or faulty vehicles from the IoV network. Our system can help in the prevention of several attacks on the VANET environment such as Sybil and Denial of Service attacks, and can be implemented in a fully decentralized fashion.
2020-09-28
Sliwa, Benjamin, Haferkamp, Marcus, Al-Askary, Manar, Dorn, Dennis, Wietfeld, Christian.  2018.  A radio-fingerprinting-based vehicle classification system for intelligent traffic control in smart cities. 2018 Annual IEEE International Systems Conference (SysCon). :1–5.
The measurement and provision of precise and up-to-date traffic-related key performance indicators is a key element and crucial factor for intelligent traffic control systems in upcoming smart cities. The street network is considered as a highly-dynamic Cyber Physical System (CPS) where measured information forms the foundation for dynamic control methods aiming to optimize the overall system state. Apart from global system parameters like traffic flow and density, specific data, such as velocity of individual vehicles as well as vehicle type information, can be leveraged for highly sophisticated traffic control methods like dynamic type-specific lane assignments. Consequently, solutions for acquiring these kinds of information are required and have to comply with strict requirements ranging from accuracy over cost-efficiency to privacy preservation. In this paper, we present a system for classifying vehicles based on their radio-fingerprint. In contrast to other approaches, the proposed system is able to provide real-time capable and precise vehicle classification as well as cost-efficient installation and maintenance, privacy preservation and weather independence. The system performance in terms of accuracy and resource-efficiency is evaluated in the field using comprehensive measurements. Using a machine learning based approach, the resulting success ratio for classifying cars and trucks is above 99%.
2020-09-11
Garip, Mevlut Turker, Lin, Jonathan, Reiher, Peter, Gerla, Mario.  2019.  SHIELDNET: An Adaptive Detection Mechanism against Vehicular Botnets in VANETs. 2019 IEEE Vehicular Networking Conference (VNC). :1—7.
Vehicular ad hoc networks (VANETs) are designed to provide traffic safety by enabling vehicles to broadcast information-such as speed, location and heading-through inter-vehicular communications to proactively avoid collisions. However, the attacks targeting these networks might overshadow their advantages if not protected against. One powerful threat against VANETs is vehicular botnets. In our earlier work, we demonstrated several vehicular botnet attacks that can have damaging impacts on the security and privacy of VANETs. In this paper, we present SHIELDNET, the first detection mechanism against vehicular botnets. Similar to the detection approaches against Internet botnets, we target the vehicular botnet communication and use several machine learning techniques to identify vehicular bots. We show via simulation that SHIELDNET can identify 77 percent of the vehicular bots. We propose several improvements on the VANET standards and show that their existing vulnerabilities make an effective defense against vehicular botnets infeasible.
2020-08-28
Brewer, John N., Dimitoglou, George.  2019.  Evaluation of Attack Vectors and Risks in Automobiles and Road Infrastructure. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :84—89.

The evolution of smart automobiles and vehicles within the Internet of Things (IoT) - particularly as that evolution leads toward a proliferation of completely autonomous vehicles - has sparked considerable interest in the subject of vehicle/automotive security. While the attack surface is wide, there are patterns of exploitable vulnerabilities. In this study we reviewed, classified according to their attack surface and evaluated some of the common vehicle and infrastructure attack vectors identified in the literature. To remediate these attack vectors, specific technical recommendations have been provided as a way towards secure deployments of smart automobiles and transportation infrastructures.

2020-08-13
Xu, Ye, Li, Fengying, Cao, Bin.  2019.  Privacy-Preserving Authentication Based on Pseudonyms and Secret Sharing for VANET. 2019 Computing, Communications and IoT Applications (ComComAp). :157—162.
In this paper, we propose a conditional privacy-preserving authentication scheme based on pseudonyms and (t,n) threshold secret sharing, named CPPT, for vehicular communications. To achieve conditional privacy preservation, our scheme implements anonymous communications based on pseudonyms generated by hash chains. To prevent bad vehicles from conducting framed attacks on honest ones, CPPT introduces Shamir (t,n) threshold secret sharing technique. In addition, through two one-way hash chains, forward security and backward security are guaranteed, and it also optimize the revocation overhead. The size of certificate revocation list (CRL) is only proportional to the number of revoked vehicles and irrelated to how many pseudonymous certificates are held by the revoked vehicles. Extensive simulations demonstrate that CPPT outperforms ECPP, DCS, Hybrid and EMAP schemes in terms of revocation overhead, certificate updating overhead and authentication overhead.
Huang, Qinlong, Li, Nan, Zhang, Zhicheng, Yang, Yixian.  2019.  Secure and Privacy-Preserving Warning Message Dissemination in Cloud-Assisted Internet of Vehicles. 2019 IEEE Conference on Communications and Network Security (CNS). :1—8.

Cloud-assisted Internet of Vehicles (IoV)which merges the advantages of both cloud computing and Internet of Things that can provide numerous online services, and bring lots of benefits and conveniences to the connected vehicles. However, the security and privacy issues such as confidentiality, access control and driver privacy may prevent it from being widely utilized for message dissemination. Existing attribute-based message encryption schemes still bring high computational cost to the lightweight vehicles. In this paper, we introduce a secure and privacy-preserving dissemination scheme for warning message in cloud-assisted IoV. Firstly, we adopt attribute-based encryption to protect the disseminated warning message, and present a verifiable encryption and decryption outsourcing construction to reduce the computational overhead on vehicles. Secondly, we present a conditional privacy preservation mechanism which utilizes anonymous identity-based signature technique to ensure anonymous vehicle authentication and message integrity checking, and also allows the trusted authority to trace the real identity of malicious vehicle. We further achieve batch verification to improve the authentication efficiency. The analysis indicate that our scheme gains more security properties and reduces the computational overhead on the vehicles.