Visible to the public Biblio

Filters: Keyword is Cloud Security  [Clear All Filters]
2019-03-06
Fargo, F., Sury, S..  2018.  Autonomic Secure HPC Fabric Architecture. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA). :1-4.

Cloud computing is the major paradigm in today's IT world with the capabilities of security management, high performance, flexibility, scalability. Customers valuing these features can better benefit if they use a cloud environment built using HPC fabric architecture. However, security is still a major concern, not only on the software side but also on the hardware side. There are multiple studies showing that the malicious users can affect the regular customers through the hardware if they are co-located on the same physical system. Therefore, solving possible security concerns on the HPC fabric architecture will clearly make the fabric industries leader in this area. In this paper, we propose an autonomic HPC fabric architecture that leverages both resilient computing capabilities and adaptive anomaly analysis for further security.

2019-02-14
Cox, Guilherme, Yan, Zi, Bhattacharjee, Abhishek, Ganapathy, Vinod.  2018.  Secure, Consistent, and High-Performance Memory Snapshotting. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :236-247.

Many security and forensic analyses rely on the ability to fetch memory snapshots from a target machine. To date, the security community has relied on virtualization, external hardware or trusted hardware to obtain such snapshots. These techniques either sacrifice snapshot consistency or degrade the performance of applications executing atop the target. We present SnipSnap, a new snapshot acquisition system based on on-package DRAM technologies that offers snapshot consistency without excessively hurting the performance of the target's applications. We realize SnipSnap and evaluate its benefits using careful hardware emulation and software simulation, and report our results.

2019-02-08
Thimmaraju, Kashyap, Shastry, Bhargava, Fiebig, Tobias, Hetzelt, Felicitas, Seifert, Jean-Pierre, Feldmann, Anja, Schmid, Stefan.  2018.  Taking Control of SDN-Based Cloud Systems via the Data Plane. Proceedings of the Symposium on SDN Research. :1:1-1:15.

Virtual switches are a crucial component of SDN-based cloud systems, enabling the interconnection of virtual machines in a flexible and "software-defined" manner. This paper raises the alarm on the security implications of virtual switches. In particular, we show that virtual switches not only increase the attack surface of the cloud, but virtual switch vulnerabilities can also lead to attacks of much higher impact compared to traditional switches. We present a systematic security analysis and identify four design decisions which introduce vulnerabilities. Our findings motivate us to revisit existing threat models for SDN-based cloud setups, and introduce a new attacker model for SDN-based cloud systems using virtual switches. We demonstrate the practical relevance of our analysis using a case study with Open vSwitch and OpenStack. Employing a fuzzing methodology, we find several exploitable vulnerabilities in Open vSwitch. Using just one vulnerability we were able to create a worm that can compromise hundreds of servers in a matter of minutes. Our findings are applicable beyond virtual switches: NFV and high-performance fast path implementations face similar issues. This paper also studies various mitigation techniques and discusses how to redesign virtual switches for their integration.

Csikor, Levente, Rothenberg, Christian, Pezaros, Dimitrios P., Schmid, Stefan, Toka, László, Retvari, Gabor.  2018.  Policy Injection: A Cloud Dataplane DoS Attack. Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos. :147-149.

Enterprises continue to migrate their services to the cloud on a massive scale, but the increasing attack surface has become a natural target for malevolent actors. We show policy injection, a novel algorithmic complexity attack that enables a tenant to add specially tailored ACLs into the data center fabric to mount a denial-of-service attack through exploiting the built-in security mechanisms of the cloud management systems (CMS). Our insight is that certain ACLs, when fed with special covert packets by an attacker, may be very difficult to evaluate, leading to an exhaustion of cloud resources. We show how a tenant can inject seemingly harmless ACLs into the cloud data plane to abuse an algorithmic deficiency in the most popular cloud hypervisor switch, Open vSwitch, and reduce its effective peak performance by 80–90%, and, in certain cases, denying network access altogether.

2019-01-31
McCulley, Shane, Roussev, Vassil.  2018.  Latent Typing Biometrics in Online Collaboration Services. Proceedings of the 34th Annual Computer Security Applications Conference. :66–76.

The use of typing biometrics—the characteristic typing patterns of individual keyboard users—has been studied extensively in the context of enhancing multi-factor authentication services. The key starting point for such work has been the collection of high-fidelity local timing data, and the key (implicit) security assumption has been that such biometrics could not be obtained by other means. We show that the latter assumption to be false, and that it is entirely feasible to obtain useful typing biometric signatures from third-party timing logs. Specifically, we show that the logs produced by realtime collaboration services during their normal operation are of sufficient fidelity to successfully impersonate a user using remote data only. Since the logs are routinely shared as a byproduct of the services' operation, this creates an entirely new avenue of attack that few users would be aware of. As a proof of concept, we construct successful biometric attacks using only the log-based structure (complete editing history) of a shared Google Docs, or Zoho Writer, document which is readily available to all contributing parties. Using the largest available public data set of typing biometrics, we are able to create successful forgeries 100% of the time against a commercial biometric service. Our results suggest that typing biometrics are not robust against practical forgeries, and should not be given the same weight as other authentication factors. Another important implication is that the routine collection of detailed timing logs by various online services also inherently (and implicitly) contains biometrics. This not only raises obvious privacy concerns, but may also undermine the effectiveness of network anonymization solutions, such as ToR, when used with existing services.

Zhang, Jian, Wang, Wenxu, Gong, Liangyi, Gu, Zhaojun.  2018.  CloudI: Cloud Security Based on Cloud Introspection. Proceedings of the 2018 10th International Conference on Machine Learning and Computing. :341–346.

With the extensive application of cloud computing technology, the government, enterprises and individuals have migrated their IT applications and sensitive data to the cloud. The cloud security issues have been paid more and more attention by academics and industry. At present, the cloud security solutions are mainly implemented in the user cloud platform, such as the internal part of guest virtual machine, high privileged domain, and virtual machine monitor (VMM) or hardware layer. Through the monitoring of the tenant virtual machine to find out malicious attacks and abnormal state, which ensures the security of user cloud to a certain extent. However, this kind of method has the following shortcomings: firstly, it will increase the cloud platform overhead and interfere with the normal cloud services. Secondly, it could only obtain a limited type of security state information, so the function is single and difficult to expand. Thirdly, there will cause false information if the user cloud platform has been compromised, which will affect the effectiveness of cloud security monitoring. This paper proposes a cloud security model based on cloud introspection technology. In the user cloud platform, we deploy cloud probes to obtain the user cloud state information, such as system memory, network communication and disk storage, etc. Then we synchronize the cloud state information to the introspection cloud, which is deployed independent. Finally, through bridging the semantic gap and data analysis in the introspection cloud, we can master the security state of user cloud. At the same time, we design and implement the prototype system of CloudI (Cloud Introspection). Through the comparison with the original cloud security technology by a series of experiments, CloudI has characteristics of high security, high performance, high expandability and multiple functions.

2019-01-21
Bushouse, Micah, Reeves, Douglas.  2018.  Hyperagents: Migrating Host Agents to the Hypervisor. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :212–223.

Third-party software daemons called host agents are increasingly responsible for a modern host's security, automation, and monitoring tasks. Because of their location within the host, these agents are at risk of manipulation by malware and users. Additionally, in virtualized environments where multiple adjacent guests each run their own set of agents, the cumulative resources that agents consume adds up rapidly. Consolidating agents onto the hypervisor can address these problems, but places a technical burden on agent developers. This work presents a development methodology to re-engineer a host agent in to a hyperagent, an out-of-guest agent that gains unique hypervisor-based advantages while retaining its original in-guest capabilities. This three-phase methodology makes integrating Virtual Machine Introspection (VMI) functionality in to existing code easier and more accessible, minimizing an agent developer's re-engineering effort. The benefits of hyperagents are illustrated by porting the GRR live forensics agent, which retains 89% of its codebase, uses 40% less memory than its in-guest counterparts, and enables a 4.9x speedup for a representative data-intensive workload. This work shows that a conventional off-the-shelf host agent can be feasibly transformed into a hyperagent and provide a powerful, efficient tool for defending virtualized systems.

2018-12-03
Gorke, Christian A., Janson, Christian, Armknecht, Frederik, Cid, Carlos.  2017.  Cloud Storage File Recoverability. Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. :19–26.

Data loss is perceived as one of the major threats for cloud storage. Consequently, the security community developed several challenge-response protocols that allow a user to remotely verify whether an outsourced file is still intact. However, two important practical problems have not yet been considered. First, clients commonly outsource multiple files of different sizes, raising the question how to formalize such a scheme and in particular ensuring that all files can be simultaneously audited. Second, in case auditing of the files fails, existing schemes do not provide a client with any method to prove if the original files are still recoverable. We address both problems and describe appropriate solutions. The first problem is tackled by providing a new type of "Proofs of Retrievability" scheme, enabling a client to check all files simultaneously in a compact way. The second problem is solved by defining a novel procedure called "Proofs of Recoverability", enabling a client to obtain an assurance whether a file is recoverable or irreparably damaged. Finally, we present a combination of both schemes allowing the client to check the recoverability of all her original files, thus ensuring cloud storage file recoverability.

2018-11-14
Zhang, J., Zheng, L., Gong, L., Gu, Z..  2018.  A Survey on Security of Cloud Environment: Threats, Solutions, and Innovation. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :910–916.

With the extensive application of cloud computing technology developing, security is of paramount importance in Cloud Computing. In the cloud computing environment, surveys have been provided on several intrusion detection techniques for detecting intrusions. We will summarize some literature surveys of various attack taxonomy, which might cause various threats in cloud environment. Such as attacks in virtual machines, attacks on virtual machine monitor, and attacks in tenant network. Besides, we review massive existing solutions proposed in the literature, such as misuse detection techniques, behavior analysis of network traffic, behavior analysis of programs, virtual machine introspection (VMI) techniques, etc. In addition, we have summarized some innovations in the field of cloud security, such as CloudVMI, data mining techniques, artificial intelligence, and block chain technology, etc. At the same time, our team designed and implemented the prototype system of CloudI (Cloud Introspection). CloudI has characteristics of high security, high performance, high expandability and multiple functions.

2018-10-26
Halabi, T., Bellaiche, M., Abusitta, A..  2018.  A Cooperative Game for Online Cloud Federation Formation Based on Security Risk Assessment. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :83–88.

Cloud federations allow Cloud Service Providers (CSPs) to deliver more efficient service performance by interconnecting their Cloud environments and sharing their resources. However, the security of the federated Cloud service could be compromised if the resources are shared with relatively insecure and unreliable CSPs. In this paper, we propose a Cloud federation formation model that considers the security risk levels of CSPs. We start by quantifying the security risk of CSPs according to well defined evaluation criteria related to security risk avoidance and mitigation, then we model the Cloud federation formation process as a hedonic coalitional game with a preference relation that is based on the security risk levels and reputations of CSPs. We propose a federation formation algorithm that enables CSPs to cooperate while considering the security risk introduced to their infrastructures, and refrain from cooperating with undesirable CSPs. According to the stability-based solution concepts that we use to evaluate the game, the model shows that CSPs will be able to form acceptable federations on the fly to service incoming resource provisioning requests whenever required.

2018-05-09
Bushouse, Micah, Ahn, Sanghyun, Reeves, Douglas.  2017.  Arav: Monitoring a Cloud's Virtual Routers. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :3:1–3:8.

Virtual Routers (VRs) are increasingly common in cloud environments. VRs route traffic between network segments and support network services. Routers, including VRs, have been the target of several recent high-profile attacks, emphasizing the need for more security measures, including security monitoring. However, existing agent-based monitoring systems are incompatible with a VR's temporary nature, stripped-down operating system, and placement in the cloud. As a result, VRs are often not monitored, leading to undetected security incidents. This paper proposes a new security monitoring design that leverages virtualization instead of in-guest agents. Its hypervisor-based system, Arav, scrutinizes VRs by novel application of Virtual Machine Introspection (VMI) breakpoint injection. Arav monitored and addressed security-related events in two common VRs, pfSense and VyOS, and detected four attacks against two popular VR services, Quagga and OpenVPN. Arav's performance overhead is negligible, less than 0.63%, demonstrating VMI's utility in monitoring virtual machines unsuitable for traditional security monitoring.

Mahajan, V., Peddoju, S. K..  2017.  Integration of Network Intrusion Detection Systems and Honeypot Networks for Cloud Security. 2017 International Conference on Computing, Communication and Automation (ICCCA). :829–834.

With an aim of provisioning fast, reliable and low cost services to the users, the cloud-computing technology has progressed leaps and bounds. But, adjacent to its development is ever increasing ability of malicious users to compromise its security from outside as well as inside. The Network Intrusion Detection System (NIDS) techniques has gone a long way in detection of known and unknown attacks. The methods of detection of intrusion and deployment of NIDS in cloud environment are dependent on the type of services being rendered by the cloud. It is also important that the cloud administrator is able to determine the malicious intensions of the attackers and various methods of attack. In this paper, we carry out the integration of NIDS module and Honeypot Networks in Cloud environment with objective to mitigate the known and unknown attacks. We also propose method to generate and update signatures from information derived from the proposed integrated model. Using sandboxing environment, we perform dynamic malware analysis of binaries to derive conclusive evidence of malicious attacks.

2018-04-02
Gao, F..  2017.  Application of Generalized Regression Neural Network in Cloud Security Intrusion Detection. 2017 International Conference on Robots Intelligent System (ICRIS). :54–57.

By using generalized regression neural network clustering analysis, effective clustering of five kinds of network intrusion behavior modes is carried out. First of all, intrusion data is divided into five categories by making use of fuzzy C means clustering algorithm. Then, the samples that are closet to the center of each class in the clustering results are taken as the clustering training samples of generalized neural network for the data training, and the results output by the training are the individual owned invasion category. The experimental results showed that the new algorithm has higher classification accuracy of network intrusion ways, which can provide more reliable data support for the prevention of the network intrusion.

Halvi, A. K. B., Soma, S..  2017.  A Robust and Secured Cloud Based Distributed Biometric System Using Symmetric Key Cryptography and Microsoft Cognitive API. 2017 International Conference on Computing Methodologies and Communication (ICCMC). :225–229.

Biometric authentication has been extremely popular in large scale industries. The face biometric has been used widely in various applications. Handling large numbers of face images is a challenging task in authentication of biometric system. It requires large amount of secure storage, where the registered user information can be stored. Maintaining centralized data centers to store the information requires high investment and maintenance cost, therefore there is a need for deployment of cloud services. However as there is no guaranty of the security in the cloud, user needs to implement an additional or extra layer of security before storing facial data of all registered users. In this work a unique cloud based biometric authentication system is developed using Microsoft cognitive face API. Because most of the cloud based biometric techniques are scalable it is paramount to implement a security technique which can handle the scalability. Any users can use this system for single enterprise application base over the entire enterprise application. In this work the identification number which is text information associated with each biometric image is protected by AES algorithm. The proposed technique also works under distributed system in order to have wider accessibility. The system is also being extended to validate the registered user with an image of aadhar card. An accuracy of 96% is achieved with 100 registered users face images and aadhar card images. Earlier research carried out for the development of biometric system either suffers from development of distributed system are security aspects to handle multiple biometric information such as facial image and aadhar card image.

2018-02-21
Schiefer, G., Gabel, M., Mechler, J., Schoknecht, A., Citak, M..  2017.  Security in a Distributed Key Management Approach. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). :816–821.

Cloud computing offers many advantages as flexibility or resource efficiency and can significantly reduce costs. However, when sensitive data is outsourced to a cloud provider, classified records can leak. To protect data owners and application providers from a privacy breach data must be encrypted before it is uploaded. In this work, we present a distributed key management scheme that handles user-specific keys in a single-tenant scenario. The underlying database is encrypted and the secret key is split into parts and only reconstructed temporarily in memory. Our scheme distributes shares of the key to the different entities. We address bootstrapping, key recovery, the adversary model and the resulting security guarantees.

2018-02-15
Arora, A., Khanna, A., Rastogi, A., Agarwal, A..  2017.  Cloud security ecosystem for data security and privacy. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :288–292.

In the past couple of years Cloud Computing has become an eminent part of the IT industry. As a result of its economic benefits more and more people are heading towards Cloud adoption. In present times there are numerous Cloud Service providers (CSP) allowing customers to host their applications and data onto Cloud. However Cloud Security continues to be the biggest obstacle in Cloud adoption and thereby prevents customers from accessing its services. Various techniques have been implemented by provides in order to mitigate risks pertaining to Cloud security. In this paper, we present a Hybrid Cryptographic System (HCS) that combines the benefits of both symmetric and asymmetric encryption thus resulting in a secure Cloud environment. The paper focuses on creating a secure Cloud ecosystem wherein we make use of multi-factor authentication along with multiple levels of hashing and encryption. The proposed system along with the algorithm are simulated using the CloudSim simulator. To this end, we illustrate the working of our proposed system along with the simulated results.

2018-02-14
Poh, Geong Sen, Chin, Ji-Jian, Yau, Wei-Chuen, Choo, Kim-Kwang Raymond, Mohamad, Moesfa Soeheila.  2017.  Searchable Symmetric Encryption: Designs and Challenges. ACM Comput. Surv.. 50:40:1–40:37.
Searchable Symmetric Encryption (SSE) when deployed in the cloud allows one to query encrypted data without the risk of data leakage. Despite the widespread interest, existing surveys do not examine in detail how SSE’s underlying structures are designed and how these result in the many properties of a SSE scheme. This is the gap we seek to address, as well as presenting recent state-of-the-art advances on SSE. Specifically, we present a general framework and believe the discussions may lead to insights for potential new designs. We draw a few observations. First, most schemes use index table, where optimal index size and sublinear search can be achieved using an inverted index. Straightforward updating can only be achieved using direct index, but search time would be linear. A recent trend is the combinations of index table, and tree, deployed for efficient updating and storage. Secondly, mechanisms from related fields such as Oblivious RAM (ORAM) have been integrated to reduce leakages. However, using these mechanisms to minimise leakages in schemes with richer functionalities (e.g., ranked, range) is relatively unexplored. Thirdly, a new approach (e.g., multiple servers) is required to mitigate new and emerging attacks on leakage. Lastly, we observe that a proposed index may not be practically efficient when implemented, where I/O access must be taken into consideration.
2018-02-06
Bhattacharya, S., Kumar, C. R. S..  2017.  Ransomware: The CryptoVirus Subverting Cloud Security. 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET). :1–6.

Cloud computing presents unlimited prospects for Information Technology (IT) industry and business enterprises alike. Rapid advancement brings a dark underbelly of new vulnerabilities and challenges unfolding with alarming regularity. Although cloud technology provides a ubiquitous environment facilitating business enterprises to conduct business across disparate locations, security effectiveness of this platform interspersed with threats which can bring everything that subscribes to the cloud, to a halt raises questions. However advantages of cloud platforms far outweighs drawbacks and study of new challenges helps overcome drawbacks of this technology. One such emerging security threat is of ransomware attack on the cloud which threatens to hold systems and data on cloud network to ransom with widespread damaging implications. This provides huge scope for IT security specialists to sharpen their skillset to overcome this new challenge. This paper covers the broad cloud architecture, current inherent cloud threat mechanisms, ransomware vulnerabilities posed and suggested methods to mitigate it.

Tiwari, T., Turk, A., Oprea, A., Olcoz, K., Coskun, A. K..  2017.  User-Profile-Based Analytics for Detecting Cloud Security Breaches. 2017 IEEE International Conference on Big Data (Big Data). :4529–4535.

While the growth of cloud-based technologies has benefited the society tremendously, it has also increased the surface area for cyber attacks. Given that cloud services are prevalent today, it is critical to devise systems that detect intrusions. One form of security breach in the cloud is when cyber-criminals compromise Virtual Machines (VMs) of unwitting users and, then, utilize user resources to run time-consuming, malicious, or illegal applications for their own benefit. This work proposes a method to detect unusual resource usage trends and alert the user and the administrator in real time. We experiment with three categories of methods: simple statistical techniques, unsupervised classification, and regression. So far, our approach successfully detects anomalous resource usage when experimenting with typical trends synthesized from published real-world web server logs and cluster traces. We observe the best results with unsupervised classification, which gives an average F1-score of 0.83 for web server logs and 0.95 for the cluster traces.

Wang, Y., Rawal, B., Duan, Q..  2017.  Securing Big Data in the Cloud with Integrated Auditing. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :126–131.

In this paper, we review big data characteristics and security challenges in the cloud and visit different cloud domains and security regulations. We propose using integrated auditing for secure data storage and transaction logs, real-time compliance and security monitoring, regulatory compliance, data environment, identity and access management, infrastructure auditing, availability, privacy, legality, cyber threats, and granular auditing to achieve big data security. We apply a stochastic process model to conduct security analyses in availability and mean time to security failure. Potential future works are also discussed.

2018-02-02
Mohamed, F., AlBelooshi, B., Salah, K., Yeun, C. Y., Damiani, E..  2017.  A Scattering Technique for Protecting Cryptographic Keys in the Cloud. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :301–306.

Cloud computing has become a widely used computing paradigm providing on-demand computing and storage capabilities based on pay-as-you-go model. Recently, many organizations, especially in the field of big data, have been adopting the cloud model to perform data analytics through leasing powerful Virtual Machines (VMs). VMs can be attractive targets to attackers as well as untrusted cloud providers who aim to get unauthorized access to the business critical-data. The obvious security solution is to perform data analytics on encrypted data through the use of cryptographic keys as that of the Advanced Encryption Standard (AES). However, it is very easy to obtain AES cryptographic keys from the VM's Random Access Memory (RAM). In this paper, we present a novel key-scattering (KS) approach to protect the cryptographic keys while encrypting/decrypting data. Our solution is highly portable and interoperable. Thus, it could be integrated within today's existing cloud architecture without the need for further modifications. The feasibility of the approach has been proven by implementing a functioning prototype. The evaluation results show that our approach is substantially more resilient to brute force attacks and key extraction tools than the standard AES algorithm, with acceptable execution time.

2018-01-16
Ba-Hutair, M. N., Kamel, I..  2016.  A New Scheme for Protecting the Privacy and Integrity of Spatial Data on the Cloud. 2016 IEEE Second International Conference on Multimedia Big Data (BigMM). :394–397.

As the amount of spatial data gets bigger, organizations realized that it is cheaper and more flexible to keep their data on the Cloud rather than to establish and maintain in-house huge data centers. Though this saves a lot for IT costs, organizations are still concerned about the privacy and security of their data. Encrypting the whole database before uploading it to the Cloud solves the security issue. But querying the database requires downloading and decrypting the data set, which is impractical. In this paper, we propose a new scheme for protecting the privacy and integrity of spatial data stored in the Cloud while being able to execute range queries efficiently. The proposed technique suggests a new index structure to support answering range query over encrypted data set. The proposed indexing scheme is based on the Z-curve. The paper describes a distributed algorithm for answering range queries over spatial data stored on the Cloud. We carried many simulation experiments to measure the performance of the proposed scheme. The experimental results show that the proposed scheme outperforms the most recent schemes by Kim et al. in terms of data redundancy.

2018-01-10
Jeyaprabha, T. J., Sumathi, G., Nivedha, P..  2017.  Smart and secure data storage using Encrypt-interleaving. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). :1–6.

In the recent years many companies are shifting towards cloud for expanding their business profit with least additional cost. Cloud computing is a growing technology which has emerged from the development of grid computing, virtualization and utility computing. Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources like networks, servers, storage, applications, and services that can be rapidly provisioned and released with minimal management effort or service provider interaction. There was a huge data loss during the recent Chennai floods during Dec 2015. If these data would have been stored at distributed data centers great loss could have been prevented. Though, such natural calamities are tempting many users to shift towards the cloud storage, security threats are inhibiting them to shift towards the cloud. Many solutions have been addressed for these security issues but they do not give guaranteed security. By guaranteed security we mean confidentiality, integrity and availability. Some of the existing techniques for providing security are Cryptographic Protocols, Data Sanitization, Predicate Logic, Access Control Mechanism, Honeypots, Sandboxing, Erasure Coding, RAID(Redundant Arrays of Independent Disks), Homomorphic Encryption and Split-Key Encryption. All these techniques either cannot work alone or adds computational and time complexity. An alternate scheme of combining encryption and channel coding schemes at one-go is proposed for increasing the levels of security. Hybrid encryption scheme is proposed to be used in the interleaver block of Turbo coder for avoiding burst error. Hybrid encryption avoids sharing of secret key via the unsecured channel. This provides both security and reliability by reducing error propagation effect with small additional cost and computational overhead. Time complexity can be reduced when encryption and encoding are done as a single process.

2017-12-12
August, M. A., Diallo, M. H., Graves, C. T., Slayback, S. M., Glasser, D..  2017.  AnomalyDetect: Anomaly Detection for Preserving Availability of Virtualized Cloud Services. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :334–340.

In this paper, we present AnomalyDetect, an approach for detecting anomalies in cloud services. A cloud service consists of a set of interacting applications/processes running on one or more interconnected virtual machines. AnomalyDetect uses the Kalman Filter as the basis for predicting the states of virtual machines running cloud services. It uses the cloud service's virtual machine historical data to forecast potential anomalies. AnomalyDetect has been integrated with the AutoMigrate framework and serves as the means for detecting anomalies to automatically trigger live migration of cloud services to preserve their availability. AutoMigrate is a framework for developing intelligent systems that can monitor and migrate cloud services to maximize their availability in case of cloud disruption. We conducted a number of experiments to analyze the performance of the proposed AnomalyDetect approach. The experimental results highlight the feasibility of AnomalyDetect as an approach to autonomic cloud availability.

2017-11-27
Hong, M. Q., Wang, P. Y., Zhao, W. B..  2016.  Homomorphic Encryption Scheme Based on Elliptic Curve Cryptography for Privacy Protection of Cloud Computing. 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS). :152–157.

Cloud computing is becoming the main computing model in the future due to its advantages such as high resource utilization rate and save high cost of performance. The public environments is become necessary to secure their storage and transmission against possible attacks such as known-plain-text attack and semantic security. How to ensure the data security and the privacy preserving, however, becomes a huge obstacle to its development. The traditional way to solve Secure Multiparty Computation (SMC) problem is using Trusted Third Party (TTP), however, TTPs are particularly hard to achieve and compute complexity. To protect user's privacy data, the encrypted outsourcing data are generally stored and processed in cloud computing by applying homomorphic encryption. According to above situation, we propose Elliptic Curve Cryptography (ECC) based homomorphic encryption scheme for SMC problem that is dramatically reduced computation and communication cost. It shows that the scheme has advantages in energy consumption, communication consumption and privacy protection through the comparison experiment between ECC based homomorphic encryption and RSA&Paillier encryption algorithm. Further evidence, the scheme of homomorphic encryption scheme based on ECC is applied to the calculation of GPS data of the earthquake and prove it is proved that the scheme is feasible, excellent encryption effect and high security.