Biblio
Embedded systems involve an integration of a large number of intellectual property (IP) blocks to shorten chip's time to market, in which, many IPs are acquired from the untrusted third-party suppliers. However, existing IP trust verification techniques cannot provide an adequate security assurance that no hardware Trojan was implanted inside the untrusted IPs. Hardware Trojans in untrusted IPs may cause processor program execution failures by tampering instruction code and return address. Therefore, this paper presents a secure RISC-V embedded system by integrating a Security Monitoring Unit (SMU), in which, instruction integrity monitoring by the fine-grained program basic blocks and function return address monitoring by the shadow stack are implemented, respectively. The hardware-assisted SMU is tested and validated that while CPU executes a CoreMark program, the SMU does not incur significant performance overhead on providing instruction security monitoring. And the proposed RISC-V embedded system satisfies good balance between performance overhead and resource consumption.
Security has become a crucial consideration and is one of the most important design goals for an embedded system. This paper examines the type of boot sequence, and more specifically a trusted boot which utilizes the method of chain of trust. After defining these terms, this paper will examine the limitations of the existing safe boot, and finally propose the method of trusted boot based on hypothesis testing benchmark and the cost it takes to perform this method.
This paper describe most popular IoT protocols used for IoT embedded systems and research their advantage and disadvantage. Hardware stage used in this experiment is described in this article - it is used Esp32 and programming language C. It is very important to use corrected IoT protocol that is determines of purpose, hardware and software of system. There are so different IoT protocols, because they are cover vary requirements for vary cases.
Memory corruption vulnerabilities have been around for decades and rank among the most prevalent vulnerabilities in embedded systems. Yet this constrained environment poses unique design and implementation challenges that significantly complicate the adoption of common hardening techniques. Combined with the irregular and involved nature of embedded patch management, this results in prolonged vulnerability exposure windows and vulnerabilities that are relatively easy to exploit. Considering the sensitive and critical nature of many embedded systems, this situation merits significant improvement. In this work, we present the first quantitative study of exploit mitigation adoption in 42 embedded operating systems, showing the embedded world to significantly lag behind the general-purpose world. To improve the security of deeply embedded systems, we subsequently present μArmor, an approach to address some of the key gaps identified in our quantitative analysis. μArmor raises the bar for exploitation of embedded memory corruption vulnerabilities, while being adoptable on the short term without incurring prohibitive extra performance or storage costs.
This paper studies and describes encrypted communication between IoT cloud and IoT embedded systems. It uses encrypted MQTTS protocol with SSL/TLS certificate. A JSON type data format is used between the cloud structure and the IoT device. The embedded system used in this experiment is Esp32 Wrover. The IoT embedded system measures temperature and humidity from a sensor DHT22. The architecture and software implementation of the experimental stage are also presented.
Internet of Things (IoT) era has gradually entered our life, with the rapid development of communication and embedded system, IoT technology has been widely used in many fields. Therefore, to maintain the security of the IoT system is becoming a priority of the successful deployment of IoT networks. This paper presents an intrusion detection model based on improved Deep Belief Network (DBN). Through multiple iterations of the genetic algorithm (GA), the optimal network structure is generated adaptively, so that the intrusion detection model based on DBN achieves a high detection rate. Finally, the KDDCUP data set was used to simulate and evaluate the model. Experimental results show that the improved intrusion detection model can effectively improve the detection rate of intrusion attacks.
In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.
Embedded systems that communicate with each other over the internet and build up a larger, loosely coupled (hardware) system with an unknown configuration at runtime is often referred to as a cyberphysical system. Many of these systems can become, due to its associated risks during their operation, safety critical. With increased complexity of such systems, the number of configurations can either be infinite or even unknown at design time. Hence, a certification at design time for such systems that documents a safe interaction for all possible configurations of all participants at runtime can become unfeasible. If such systems come together in a new configuration, a mechanism is required that can decide whether or not it is safe for them to interact. Such a mechanism can generally not be part of such systems for the sake of trust. Therefore, we present in the following sections the SEnSE device, short for Secure and Safe Embedded, that tackles these challenges and provides a secure and safe integration of safety-critical embedded systems.
Having an effective security level for Embedded System (ES), helps a reliable and stable operation of this system. In order to identify, if the current security level for a given ES is effective or not, we need a proactive evaluation for this security level. The evaluation of the security level for ESs is not straightforward process, things like the heterogeneity among the components of ES complicate this process. One of the productive approaches, which overcame the complexity of evaluation for Security, Privacy and Dependability (SPD) is the Multi Metrics (MM). As most of SPD evaluation approaches, the MM approach bases on the experts knowledge for the basic evaluation. Regardless of its advantages, experts evaluation has some drawbacks, which foster the need for less experts-dependent evaluation. In this paper, we propose a framework for security measurability as a part of security, privacy and dependability evaluation. The security evaluation based on Multi Metric (MM) approach as being an effective approach for evaluations, thus, we call it MM framework. The art of evaluation investigated within MM framework, based also on systematic storing and retrieving of experts knowledge. Using MM framework, the administrator of the ES could evaluate and enhance the S-level of their system, without being an expert in security.
Internet-connected embedded systems have limited capabilities to defend themselves against remote hacking attacks. The potential effects of such attacks, however, can have a significant impact in the context of the Internet of Things, industrial control systems, smart health systems, etc. Embedded systems cannot effectively utilize existing software-based protection mechanisms due to limited processing capabilities and energy resources. We propose a novel hardware-based monitoring technique that can detect if the embedded operating system or any running application deviates from the originally programmed behavior due to an attack. We present an FPGA-based prototype implementation that shows the effectiveness of such a security approach.
Lots of traditional embedded systems can be called closed systems in that they do not connect and communicate with systems or devices outside of the entities they are embedded, and some part of these systems are designed based on proprietary protocols or standards. Open embedded systems connect and communicate with other systems or devices through the Internet or other networks, and are designed based on open protocols and standards. This paper discusses two types of security challenges facing open embedded systems: the security of the devices themselves that host embedded systems, and the security of information collected, processed, communicated, and consumed by embedded systems. We also discuss solution techniques to address these challenges.
Cyber-physical system integrity requires both hardware and software security. Many of the cyber attacks are successful as they are designed to selectively target a specific hardware or software component in an embedded system and trigger its failure. Existing security measures also use attack vector models and isolate the malicious component as a counter-measure. Isolated security primitives do not provide the overall trust required in an embedded system. Trust enhancements are proposed to a hardware security platform, where the trust specifications are implemented in both software and hardware. This distribution of trust makes it difficult for a hardware-only or software-only attack to cripple the system. The proposed approach is applied to a smart grid application consisting of third-party soft IP cores, where an attack on this module can result in a blackout. System integrity is preserved in the event of an attack and the anomalous behavior of the IP core is recorded by a supervisory module. The IP core also provides a snapshot of its trust metric, which is logged for further diagnostics.
Multiple Inductive Loop Detectors are advanced Inductive Loop Sensors that can measure traffic flow parameters in even conditions where the traffic is heterogeneous and does not conform to lanes. This sensor consists of many inductive loops in series, with each loop having a parallel capacitor across it. These inductive and capacitive elements of the sensor may undergo open or short circuit faults during operation. Such faults lead to erroneous interpretation of data acquired from the loops. Conventional methods used for fault diagnosis in inductive loop detectors consume time and effort as they require experienced technicians and involve extraction of loops from the saw-cut slots on the road. This also means that the traffic flow parameters cannot be measured until the sensor system becomes functional again. The repair activities would also disturb traffic flow. This paper presents a method for automating fault diagnosis for series-connected Multiple Inductive Loop Detectors, based on an impulse test. The system helps in the diagnosis of open/short faults associated with the inductive and capacitive elements of the sensor structure by displaying the fault status conveniently. Since the fault location as well as the fault type can be precisely identified using this method, the repair actions are also localised. The proposed system thereby results in significant savings in both repair time and repair costs. An embedded system was developed to realize this scheme and the same was tested on a loop prototype.