Visible to the public Biblio

Filters: Keyword is parallel processing  [Clear All Filters]
2023-09-20
Dixit, Utkarsh, Bhatia, Suman, Bhatia, Pramod.  2022.  Comparison of Different Machine Learning Algorithms Based on Intrusion Detection System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:667—672.
An IDS is a system that helps in detecting any kind of doubtful activity on a computer network. It is capable of identifying suspicious activities at both the levels i.e. locally at the system level and in transit at the network level. Since, the system does not have its own dataset as a result it is inefficient in identifying unknown attacks. In order to overcome this inefficiency, we make use of ML. ML assists in analysing and categorizing attacks on diverse datasets. In this study, the efficacy of eight machine learning algorithms based on KDD CUP99 is assessed. Based on our implementation and analysis, amongst the eight Algorithms considered here, Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) have the highest testing accuracy of which got SVM does have the highest accuracy
2023-07-12
Ravi, Renjith V., Goyal, S. B., Islam, Sardar M N.  2022.  Colour Image Encryption Using Chaotic Trigonometric Map and DNA Coding. 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). :172—176.
The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA's outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
Hadi, Ahmed Hassan, Abdulshaheed, Sameer Hameed, Wadi, Salim Muhsen.  2022.  Safeguard Algorithm by Conventional Security with DNA Cryptography Method. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :195—201.
Encryption defined as change information process (which called plaintext) into an unreadable secret format (which called ciphertext). This ciphertext could not be easily understood by somebody except authorized parson. Decryption is the process to converting ciphertext back into plaintext. Deoxyribonucleic Acid (DNA) based information ciphering techniques recently used in large number of encryption algorithms. DNA used as data carrier and the modern biological technology is used as implementation tool. New encryption algorithm based on DNA is proposed in this paper. The suggested approach consists of three steps (conventional, stream cipher and DNA) to get high security levels. The character was replaced by shifting depend character location in conventional step, convert to ASCII and AddRoundKey was used in stream cipher step. The result from second step converted to DNA then applying AddRoundKey with DNA key. The evaluation performance results proved that the proposed algorithm cipher the important data with high security levels.
2023-03-31
Mudgal, Akshay, Bhatia, Shaveta.  2022.  A Step Towards Improvement in Classical Honeypot Security System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:720–725.
Data security is a vast term that doesn’t have any limits, but there are a certain amount of tools and techniques that could help in gaining security. Honeypot is among one of the tools that are designated and designed to protect the security of a network but in a very dissimilar manner. It is a system that is designed and developed to be compromised and exploited. Honeypots are meant to lure the invaders, but due to advancements in computing systems parallelly, the intruding technologies are also attaining their gigantic influence. In this research work, an approach involving apache-spark (a Big Data Technique) would be introduced in order to use it with the Honeypot System. This work includes an extensive study based on several research papers, through which elaborated experiment-based result has been expressed on the best known open-source honeypot systems. The preeminent possible method of using The Honeypot with apache spark in the sequential channel would also be proposed with the help of a framework diagram.
2023-03-03
Dal, Deniz, Çelik, Esra.  2022.  Evaluation of the Predictability of Passwords of Computer Engineering Students. 2022 3rd International Informatics and Software Engineering Conference (IISEC). :1–6.
As information and communication technologies evolve every day, so does the use of technology in our daily lives. Along with our increasing dependence on digital information assets, security vulnerabilities are becoming more and more apparent. Passwords are a critical component of secure access to digital systems and applications. They not only prevent unauthorized access to these systems, but also distinguish the users of such systems. Research on password predictability often relies on surveys or leaked data. Therefore, there is a gap in the literature for studies that consider real data in this regard. This study investigates the password security awareness of 161 computer engineering students enrolled in a Linux-based undergraduate course at Ataturk University. The study is conducted in two phases, and in the first phase, 12 dictionaries containing also real student data are formed. In the second phase of the study, a dictionary-based brute-force attack is utilized by means of a serial and parallel version of a Bash script to crack the students’ passwords. In this respect, the /etc/shadow file of the Linux system is used as a basis to compare the hashed versions of the guessed passwords. As a result, the passwords of 23 students, accounting for 14% of the entire student group, were cracked. We believe that this is an unacceptably high prediction rate for such a group with high digital literacy. Therefore, due to this important finding of the study, we took immediate action and shared the results of the study with the instructor responsible for administering the information security course that is included in our curriculum and offered in one of the following semesters.
2023-02-17
Sharma, Pradeep Kumar, Kumar, Brijesh, Tyagi, S.S.  2022.  STADS: Security Threats Assessment and Diagnostic System in Software Defined Networking (SDN). 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:744–751.
Since the advent of the Software Defined Networking (SDN) in 2011 and formation of Open Networking Foundation (ONF), SDN inspired projects have emerged in various fields of computer networks. Almost all the networking organizations are working on their products to be supported by SDN concept e.g. openflow. SDN has provided a great flexibility and agility in the networks by application specific control functions with centralized controller, but it does not provide security guarantees for security vulnerabilities inside applications, data plane and controller platform. As SDN can also use third party applications, an infected application can be distributed in the network and SDN based systems may be easily collapsed. In this paper, a security threats assessment model has been presented which highlights the critical areas with security requirements in SDN. Based on threat assessment model a proposed Security Threats Assessment and Diagnostic System (STADS) is presented for establishing a reliable SDN framework. The proposed STADS detects and diagnose various threats based on specified policy mechanism when different components of SDN communicate with controller to fulfil network requirements. Mininet network emulator with Ryu controller has been used for implementation and analysis.
2023-02-13
Rupasri, M., Lakhanpal, Anupam, Ghosh, Soumalya, Hedage, Atharav, Bangare, Manoj L., Ketaraju, K. V. Daya Sagar.  2022.  Scalable and Adaptable End-To-End Collection and Analysis of Cloud Computing Security Data: Towards End-To-End Security in Cloud Computing Systems. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:8—14.

Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.

2023-01-13
Purdy, Ruben, Duvalsaint, Danielle, Blanton, R. D. Shawn.  2022.  Security Metrics for Logic Circuits. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :53—56.
Any type of engineered design requires metrics for trading off both desirable and undesirable properties. For integrated circuits, typical properties include circuit size, performance, power, etc., where for example, performance is a desirable property and power consumption is not. Security metrics, on the other hand, are extremely difficult to develop because there are active adversaries that intend to compromise the protected circuitry. This implies metric values may not be static quantities, but instead are measures that degrade depending on attack effectiveness. In order to deal with this dynamic aspect of a security metric, a general attack model is proposed that enables the effectiveness of various security approaches to be directly compared in the context of an attack. Here, we describe, define and demonstrate that the metrics presented are both meaningful and measurable.
2023-01-06
Jagadeesha, Nishchal.  2022.  Facial Privacy Preservation using FGSM and Universal Perturbation attacks. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:46—52.
Research done in Facial Privacy so far has entrenched the scope of gleaning race, age, and gender from a human’s facial image that are classifiable and compliant biometric attributes. Noticeable distortions, morphing, and face-swapping are some of the techniques that have been researched to restore consumers’ privacy. By fooling face recognition models, these techniques cater superficially to the needs of user privacy, however, the presence of visible manipulations negatively affects the aesthetic of the image. The objective of this work is to highlight common adversarial techniques that can be used to introduce granular pixel distortions using white-box and black-box perturbation algorithms that ensure the privacy of users’ sensitive or personal data in face images, fooling AI facial recognition models while maintaining the aesthetics of and visual integrity of the image.
2022-11-08
Yang, Shaofei, Liu, Longjun, Li, Baoting, Sun, Hongbin, Zheng, Nanning.  2020.  Exploiting Variable Precision Computation Array for Scalable Neural Network Accelerators. 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). :315–319.
In this paper, we present a flexible Variable Precision Computation Array (VPCA) component for different accelerators, which leverages a sparsification scheme for activations and a low bits serial-parallel combination computation unit for improving the efficiency and resiliency of accelerators. The VPCA can dynamically decompose the width of activation/weights (from 32bit to 3bit in different accelerators) into 2-bits serial computation units while the 2bits computing units can be combined in parallel computing for high throughput. We propose an on-the-fly compressing and calculating strategy SLE-CLC (single lane encoding, cross lane calculation), which could further improve performance of 2-bit parallel computing. The experiments results on image classification datasets show VPCA can outperforms DaDianNao, Stripes, Loom-2bit by 4.67×, 2.42×, 1.52× without other overhead on convolution layers.
2022-10-04
de Sousa, Flavia Domingues, Battiston, Alexandre, PIERFEDERICI, Serge, Meibody-Tabar, Farid.  2021.  Validation of the standstill magnetization strategy of a FeCrCo-based Variable Flux Memory Machine. 2021 24th International Conference on Electrical Machines and Systems (ICEMS). :536–541.
The use of AlNiCo alloys as the low coercive force (LCF) magnet in Variable Flux Memory Machines has been largely discussed in the literature, but similar magnetic materials as FeCrCo are still little explored. This paper proposes the study of a standstill magnetization strategy of a Variable Flux Memory Machine composed by a FeCrCo-based cylindrical rotor. An inverter in DC/DC mode is proposed for injecting short-time currents along the magnetization axis aiming the regulation of the magnetization state of the FeCrCo. A methodology for validating results obtained is defined from the estimation of the remanence and the excitation field characterizing the behavior of the internal recoil lines of the magnet used in the rotor. A study of the armature reaction affecting the machine when q-axis currents supply the machine is proposed by simulation.
2022-06-07
Varsha Suresh, P., Lalitha Madhavu, Minu.  2021.  Insider Attack: Internal Cyber Attack Detection Using Machine Learning. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
A Cyber Attack is a sudden attempt launched by cybercriminals against multiple computers or networks. According to evolution of cyber space, insider attack is the most serious attack faced by end users, all over the world. Cyber Security reports shows that both US federal Agency as well as different organizations faces insider threat. Machine learning (ML) provide an important technology to secure data from insider threats. Random Forest is the best algorithm that focus on user's action, services and ability for insider attack detection based on data granularity. Substantial raise in the count of decision tree, increases the time consumption and complexity of Random Forest. A novel algorithm Known as Random Forest With Randomized Weighted Fuzzy Feature Set (RF-RWFF) is developed. Fuzzy Membership Function is used for feature aggregation and Randomized Weighted Majority Algorithm (RWMA) is used in the prediction part of Random Forest (RF) algorithm to perform voting. RWMA transform conventional Random Forest, to a perceptron like algorithm and increases the miliage. The experimental results obtained illustrate that the proposed model exhibits an overall improvement in accuracy and recall rate with very much decrease in time complexity compared to conventional Random Forest algorithm. This algorithm can be used in organization and government sector to detect insider fastly and accurately.
2022-05-19
Zhang, Feng, Pan, Zaifeng, Zhou, Yanliang, Zhai, Jidong, Shen, Xipeng, Mutlu, Onur, Du, Xiaoyong.  2021.  G-TADOC: Enabling Efficient GPU-Based Text Analytics without Decompression. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :1679–1690.
Text analytics directly on compression (TADOC) has proven to be a promising technology for big data analytics. GPUs are extremely popular accelerators for data analytics systems. Unfortunately, no work so far shows how to utilize GPUs to accelerate TADOC. We describe G-TADOC, the first framework that provides GPU-based text analytics directly on compression, effectively enabling efficient text analytics on GPUs without decompressing the input data. G-TADOC solves three major challenges. First, TADOC involves a large amount of dependencies, which makes it difficult to exploit massive parallelism on a GPU. We develop a novel fine-grained thread-level workload scheduling strategy for GPU threads, which partitions heavily-dependent loads adaptively in a fine-grained manner. Second, in developing G-TADOC, thousands of GPU threads writing to the same result buffer leads to inconsistency while directly using locks and atomic operations lead to large synchronization overheads. We develop a memory pool with thread-safe data structures on GPUs to handle such difficulties. Third, maintaining the sequence information among words is essential for lossless compression. We design a sequence-support strategy, which maintains high GPU parallelism while ensuring sequence information. Our experimental evaluations show that G-TADOC provides 31.1× average speedup compared to state-of-the-art TADOC.
2022-05-06
Jain, Kurunandan, Krishnan, Prabhakar, Rao, Vaishnavi V.  2021.  A Comparison Based Approach on Mutual Authentication and Key Agreement Using DNA Cryptography. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—6.
Cryptography is the science of encryption and decryption of data using the techniques of mathematics to achieve secure communication. This enables the user to send the data in an insecure channel. These channels are usually vulnerable to security attacks due to the data that they possess. A lot of work is being done these days to protect data and data communication. Hence securing them is the utmost concern. In recent times a lot of researchers have come up with different cryptographic techniques to protect the data over the network. One such technique used is DNA cryptography. The proposed approach employs a DNA sequencing-based encoding and decoding mechanism. The data is secured over the network using a secure authentication and key agreement procedure. A significant amount of work is done to show how DNA cryptography is secure when compared to other forms of cryptography techniques over the network.
2022-04-25
Hiraga, Hiroki, Nishi, Hiroaki.  2021.  Network Transparent Decrypting of Cryptographic Stream Considering Service Provision at the Edge. 2021 IEEE 19th International Conference on Industrial Informatics (INDIN). :1–6.
The spread of Internet of Things (IoT) devices and high-speed communications, such as 5G, makes their services rich and diverse. Therefore, it is desirable to perform functions of rich services transparently and use edge computing environments flexibly at intermediate locations on the Internet, from the perspective of a network system. When this type of edge computing environment is achieved, IoT nodes as end devices of the Internet can fully utilize edge computing systems and cloud systems without any change, such as switching destination IP addresses between them, along with protocol maintenance for the switching. However, when the data transfer in the communication is encrypted, a decryption method is necessary at the edge, to realize these transparent edge services. In this study, a transparent common key-exchanging method with cloud service has been proposed as the destination node of a communication pair, to transparently decrypt a secure sockets layer-encrypted communication stream at the edge area. This enables end devices to be free from any changes and updates to communicate with the destination node.
2022-03-15
Wang, Hong, Liu, Xiangyang, Xie, Yunhong, Zeng, Han.  2021.  The Scalable Group Testing of Invalid Signatures based on Latin Square in Wireless Sensors Networks. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1153—1158.
Digital signature is more appropriate for message security in Wireless Sensors Networks (WSNs), which is energy-limited, than costly encryption. However, it meets with difficulty of verification when a large amount of message-signature pairs swarm into the central node in WSNs. In this paper, a scalable group testing algorithm based on Latin square (SGTLS) is proposed, which focus on both batch verification of signatures and invalid signature identification. To address the problem of long time-delay during individual verification, we adapt aggregate signature for batch verification so as to judge whether there are any invalid signatures among the collection of signatures once. In particular, when batch verification fails, an invalid signature identification algorithm is presented based on scalable OR-checking matrix of Latin square, which can adjust the number of group testing by itself with the variation of invalid signatures. Comprehensive analyses show that SGTLS has more advantages, such as scalability, suitability for parallel computing and flexible design (Latin square is popular), than other algorithm.
2022-03-01
Wang, Xingbin, Zhao, Boyan, HOU, RUI, Awad, Amro, Tian, Zhihong, Meng, Dan.  2021.  NASGuard: A Novel Accelerator Architecture for Robust Neural Architecture Search (NAS) Networks. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). :776–789.
Due to the wide deployment of deep learning applications in safety-critical systems, robust and secure execution of deep learning workloads is imperative. Adversarial examples, where the inputs are carefully designed to mislead the machine learning model is among the most challenging attacks to detect and defeat. The most dominant approach for defending against adversarial examples is to systematically create a network architecture that is sufficiently robust. Neural Architecture Search (NAS) has been heavily used as the de facto approach to design robust neural network models, by using the accuracy of detecting adversarial examples as a key metric of the neural network's robustness. While NAS has been proven effective in improving the robustness (and accuracy in general), the NAS-generated network models run noticeably slower on typical DNN accelerators than the hand-crafted networks, mainly because DNN accelerators are not optimized for robust NAS-generated models. In particular, the inherent multi-branch nature of NAS-generated networks causes unacceptable performance and energy overheads.To bridge the gap between the robustness and performance efficiency of deep learning applications, we need to rethink the design of AI accelerators to enable efficient execution of robust (auto-generated) neural networks. In this paper, we propose a novel hardware architecture, NASGuard, which enables efficient inference of robust NAS networks. NASGuard leverages a heuristic multi-branch mapping model to improve the efficiency of the underlying computing resources. Moreover, NASGuard addresses the load imbalance problem between the computation and memory-access tasks from multi-branch parallel computing. Finally, we propose a topology-aware performance prediction model for data prefetching, to fully exploit the temporal and spatial localities of robust NAS-generated architectures. We have implemented NASGuard with Verilog RTL. The evaluation results show that NASGuard achieves an average speedup of 1.74× over the baseline DNN accelerator.
Gordon, Holden, Park, Conrad, Tushir, Bhagyashri, Liu, Yuhong, Dezfouli, Behnam.  2021.  An Efficient SDN Architecture for Smart Home Security Accelerated by FPGA. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–3.
With the rise of Internet of Things (IoT) devices, home network management and security are becoming complex. There is an urgent requirement to make smart home network management more efficient. This work proposes an SDN-based architecture to secure smart home networks through K-Nearest Neighbor (KNN) based device classifications and malicious traffic detection. The efficiency is enhanced by offloading the computation-intensive KNN model to a Field Programmable Gate Arrays (FPGA). Furthermore, we propose a custom KNN solution that exhibits the best performance on an FPGA compared with four alternative KNN instances (i.e., 78% faster than a parallel Bubble Sort-based implementation and 99% faster than three other sorting algorithms). Moreover, with 36,225 training samples, the proposed KNN solution classifies a test query with 95% accuracy in approximately 4 ms on an FPGA compared to 57 seconds on a CPU platform. This highlights the promise of FPGA-based platforms for edge computing applications in the smart home.
2022-02-22
Kumar, S. Ratan, Kumari, V. Valli, Raju, K. V. S. V. N..  2021.  Multi-Core Parallel Processing Technique to Prepare the Time Series Data for the Early Detection of DDoS Flooding Attacks. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :540—545.
Distributed Denial of Service (DDoS) attacks pose a considerable threat to Cloud Computing, Internet of Things (IoT) and other services offered on the Internet. The victim server receives terabytes of data per second during the DDoS attack. It may take hours to examine them to detect a potential threat, leading to denial of service to legitimate users. Processing vast volumes of traffic to mitigate the attack is a challenging task for network administrators. High-performance techniques are more suited for processing DDoS attack traffic compared to Sequential Processing Techniques. This paper proposes a Multi-Core Parallel Processing Technique to prepare the time series data for the early detection of DDoS flooding attacks. Different time series analysis methods are suggested to detect the attack early on. Producing time series data using parallel processing saves time and further speeds up the detection of the attack. The proposed method is applied to the benchmark data set CICDDoS2019 for generating four different time series to detect TCP-based flooding attacks, namely TCP-SYN, TCP-SYN-ACK, TCP-ACK, and TCP-RST. The implementation results show that the proposed method can give a speedup of 2.3 times for processing attack traffic compared to sequential processing.
Zhou, Tianyang.  2021.  Performance comparison and optimization of mainstream NIDS systems in offline mode based on parallel processing technology. 2021 2nd International Conference on Computing and Data Science (CDS). :136—140.
For the network intrusion detection system (NIDS), improving the performance of the analysis process has always been one of the primary goals that NIDS needs to solve. An important method to improve performance is to use parallel processing technology to maximize the usage of multi-core CPU resources. In this paper, by splitting Pcap data packets, the NIDS software Snort3 can process Pcap packets in parallel mode. On this basis, this paper compares the performance between Snort2, Suricata, and Snort3 with different CPU cores in processing different sizes of Pcap data packets. At the same time, a parallel unpacking algorithm is proposed to further improve the parallel processing performance of Snort3.
2021-09-01
Walter, Dominik, Witterauf, Michael, Teich, Jürgen.  2020.  Real-time Scheduling of I/O Transfers for Massively Parallel Processor Arrays. 2020 18th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). :1—11.
The following topics are dealt with: formal verification; formal specification; cyber-physical systems; program verification; mobile robots; control engineering computing; temporal logic; security of data; Internet of Things; traffic engineering computing.
2021-08-31
Rathod, Pawan Manoj, Shende, RajKumar K..  2020.  Recommendation System using optimized Matrix Multiplication Algorithm. 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). :1–4.
Volume, Variety, Velocity, Veracity & Value of data has drawn the attention of many analysts in the last few years. Performance optimization and comparison are the main challenges we face when we talk about the humongous volume of data. Data Analysts use data for activities like forecasting or deep learning and to process these data various tools are available which helps to achieve this task with minimum efforts. Recommendation System plays a crucial role while running any business such as a shopping website or travel agency where the system recommends the user according to their search history, likes, comments, or their past order/booking details. Recommendation System works on various strategies such as Content Filtering, Collaborative Filtering, Neighborhood Methods, or Matrix Factorization methods. For achieving maximum efficiency and accuracy based on the data a specific strategy can be the best case or the worst case for that scenario. Matrix Factorization is the key point of interest in this work. Matrix Factorization strategy includes multiplication of user matrix and item matrix in-order to get a rating matrix that can be recommended to the users. Matrix Multiplication can be achieved by using various algorithms such as Naive Algorithm, Strassen Algorithm, Coppersmith - Winograd (CW) Algorithm. In this work, a new algorithm is proposed to achieve less amount of time and space complexity used in-order for performing matrix multiplication which helps to get the results much faster. By using the Matrix Factorization strategy with various Matrix Multiplication Algorithm we are going to perform a comparative analysis of the same to conclude the proposed algorithm is more efficient.
2021-08-17
Chen, Congwei, Elsayed, Marwa A., Zulkernine, Mohammad.  2020.  HBD-Authority: Streaming Access Control Model for Hadoop. 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys). :16–25.
Big data analytics, in essence, is becoming the revolution of business intelligence around the world. This momentum has given rise to the hype around analytic technologies, including Apache Hadoop. Hadoop was not originally developed with security in mind. Despite the evolving efforts to integrate security in Hadoop through developing new tools (e.g., Apache Sentry and Ranger) and employing traditional mechanisms (e.g., Kerberos and LDAP), they mainly focus on providing encryption and authentication features, albeit with limited authorization support. Existing solutions in the literature extended these evolving efforts. However, they suffer from limitations, hindering them from providing robust authorization that effectively meets the unique requirements of big data environments. Towards covering this gap, this paper proposes a hybrid authority (HBD-Authority) as a formal attribute-based access control model with context support. This model is established on a novel hybrid approach of authorization transparency that pertains to three fundamental properties of accuracy: correctness, security, and completeness. The model leverages streaming data analytics to foster distributed parallel processing capabilities that achieve multifold benefits: a) efficiently managing the security policies and promptly updating the privileges assigned to a high number of users interacting with the analytic services; b) swiftly deciding and enforcing authorization of requests over data characterized by the 5Vs; and c) providing dynamic protection for data which is frequently updated. The implementation details and experimental evaluation of the proposed model are presented, demonstrating its performance efficiency.
2021-03-01
Zhang, Y., Groves, T., Cook, B., Wright, N. J., Coskun, A. K..  2020.  Quantifying the impact of network congestion on application performance and network metrics. 2020 IEEE International Conference on Cluster Computing (CLUSTER). :162–168.
In modern high-performance computing (HPC) systems, network congestion is an important factor that contributes to performance degradation. However, how network congestion impacts application performance is not fully understood. As Aries network, a recent HPC network architecture featuring a dragonfly topology, is equipped with network counters measuring packet transmission statistics on each router, these network metrics can potentially be utilized to understand network performance. In this work, by experiments on a large HPC system, we quantify the impact of network congestion on various applications' performance in terms of execution time, and we correlate application performance with network metrics. Our results demonstrate diverse impacts of network congestion: while applications with intensive MPI operations (such as HACC and MILC) suffer from more than 40% extension in their execution times under network congestion, applications with less intensive MPI operations (such as Graph500 and HPCG) are mostly not affected. We also demonstrate that a stall-to-flit ratio metric derived from Aries network counters is positively correlated with performance degradation and, thus, this metric can serve as an indicator of network congestion in HPC systems.
2020-12-28
Marichamy, V. S., Natarajan, V..  2020.  A Study of Big Data Security on a Partitional Clustering Algorithm with Perturbation Technique. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :482—486.

Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main idea of the proposed work. There are numerous clustering methods available that are used to categorize the information from the big data. PCA discovers the cluster based on the initial partition of the data. In this approach, it is possible to develop a security safeguarding of data that is impoverished to allow the calculations and communication. The performances were analyzed on Health Care database under the studies of various parameters like precision, accuracy, and F-score measure. The outcome of the results is to demonstrate that this method is used to decrease the complication in preserving privacy and better accuracy than that of the existing techniques.