Biblio
Rapid development of internet and network technologies has led to considerable increase in number of attacks. Intrusion detection system is one of the important ways to achieve high security in computer networks. However, it have curse of dimensionality which tends to increase time complexity and decrease resource utilization. To improve the ability of detecting anomaly intrusions, a combined algorithm is proposed based on Weighted Fuzzy C-Mean Clustering Algorithm (WFCM) and Fuzzy logic. Decision making is performed in two stages. In the first stage, WFCM algorithm is applied to reduce the input data space. The reduced dataset is then fed to Fuzzy Logic scheme to build the fuzzy sets, membership function and the rules that decide whether an instance represents an anomaly or not.
We consider the distributed statistical learning problem over decentralized systems that are prone to adversarial attacks. This setup arises in many practical applications, including Google's Federated Learning. Formally, we focus on a decentralized system that consists of a parameter server and m working machines; each working machine keeps N/m data samples, where N is the total number of samples. In each iteration, up to q of the m working machines suffer Byzantine faults – a faulty machine in the given iteration behaves arbitrarily badly against the system and has complete knowledge of the system. Additionally, the sets of faulty machines may be different across iterations. Our goal is to design robust algorithms such that the system can learn the underlying true parameter, which is of dimension d, despite the interruption of the Byzantine attacks. In this paper, based on the geometric median of means of the gradients, we propose a simple variant of the classical gradient descent method. We show that our method can tolerate q Byzantine failures up to 2(1+$ε$)q łe m for an arbitrarily small but fixed constant $ε$0. The parameter estimate converges in O(łog N) rounds with an estimation error on the order of max $\surd$dq/N, \textasciitilde$\surd$d/N , which is larger than the minimax-optimal error rate $\surd$d/N in the centralized and failure-free setting by at most a factor of $\surd$q . The total computational complexity of our algorithm is of O((Nd/m) log N) at each working machine and O(md + kd log 3 N) at the central server, and the total communication cost is of O(m d log N). We further provide an application of our general results to the linear regression problem. A key challenge arises in the above problem is that Byzantine failures create arbitrary and unspecified dependency among the iterations and the aggregated gradients. To handle this issue in the analysis, we prove that the aggregated gradient, as a function of model parameter, converges uniformly to the true gradient function.
Scan design is a universal design for test (DFT) technology to increase the observability and controllability of the circuits under test by using scan chains. However, it also leads to a potential security problem that attackers can use scan design as a backdoor to extract confidential information. Researchers have tried to address this problem by using secure scan structures that usually have some keys to confirm the identities of users. However, the traditional methods to store intermediate data or keys in memory are also under high risk of being attacked. In this paper, we propose a dynamic-key secure DFT structure that can defend scan-based and memory attacks without decreasing the system performance and the testability. The main idea is to build a scan design key generator that can generate the keys dynamically instead of storing and using keys in the circuit statically. Only specific patterns derived from the original test patterns are valid to construct the keys and hence the attackers cannot shift in any other patterns to extract correct internal response from the scan chains or retrieve the keys from memory. Analysis results show that the proposed method can achieve a very high security level and the security level will not decrease no matter how many guess rounds the attackers have tried due to the dynamic nature of our method.
A beneficial botnet, which tries to cope with technology of malicious botnets such as peer to peer (P2P) networking and Domain Generation Algorithm (DGA), is discussed. In order to cope with such botnets' technology, we are developing a beneficial botnet as an anti-bot measure, using our previous beneficial bot. The beneficial botnet is a group of beneficial bots. The peer to peer (P2P) communication of malicious botnet is hard to detect by a single Intrusion Detection System (IDS). Our beneficial botnet has the ability to detect P2P communication, using collaboration of our beneficial bots. The beneficial bot could detect communication of the pseudo botnet which mimics malicious botnet communication. Our beneficial botnet may also detect communication using DGA. Furthermore, our beneficial botnet has ability to cope with new technology of new botnets, because our beneficial botnet has the ability to evolve, as same as malicious botnets.
With the rapid development of the information industry, the applications of Internet of things, cloud computing and artificial intelligence have greatly affected people's life, and the network equipment has increased with a blowout type. At the same time, more complex network environment has also led to a more serious network security problem. The traditional security solution becomes inefficient in the new situation. Therefore, it is an important task for the security industry to seek technical progress and improve the protection detection and protection ability of the security industry. Botnets have been one of the most important issues in many network security problems, especially in the last one or two years, and China has become one of the most endangered countries by botnets, thus the huge impact of botnets in the world has caused its detection problems to reset people's attention. This paper, based on the topic of botnet detection, focuses on the latest research achievements of botnet detection based on machine learning technology. Firstly, it expounds the application process of machine learning technology in the research of network space security, introduces the structure characteristics of botnet, and then introduces the machine learning in botnet detection. The security features of these solutions and the commonly used machine learning algorithms are emphatically analyzed and summarized. Finally, it summarizes the existing problems in the existing solutions, and the future development direction and challenges of machine learning technology in the research of network space security.
Text-based CAPTCHAs are still commonly used to attempt to prevent automated access to web services. By displaying an image of distorted text, they attempt to create a challenge image that OCR software can not interpret correctly, but a human user can easily determine the correct response to. This work focuses on a CAPTCHA used by a popular Chinese language question-and-answer website and how resilient it is to modern machine learning methods. While the majority of text-based CAPTCHAs focus on transcription tasks, the CAPTCHA solved in this work is based on localization of inverted symbols in a distorted image. A convolutional neural network (CNN) was created to evaluate the likelihood of a region in the image belonging to an inverted character. It is used with a feature map and clustering to identify potential locations of inverted characters. Training of the CNN was performed using curriculum learning and compared to other potential training methods. The proposed method was able to determine the correct response in 95.2% of cases of a simulated CAPTCHA and 67.6% on a set of real CAPTCHAs. Potential methods to increase difficulty of the CAPTCHA and the success rate of the automated solver are considered.
One of the biggest challenges for the Internet of Things (IoT) is to bridge the currently fragmented trust domains. The traditional PKI model relies on a common root of trust and does not fit well with the heterogeneous IoT ecosystem where constrained devices belong to independent administrative domains. In this work we describe a distributed trust model for the IoT that leverages the existing trust domains and bridges them to create end-to-end trust between IoT devices without relying on any common root of trust. Furthermore we define a new cryptographic primitive, denoted as obligation chain designed as a credit-based Blockchain with a built-in reputation mechanism. Its innovative design enables a wide range of use cases and business models that are simply not possible with current Blockchain-based solutions while not experiencing traditional blockchain delays. We provide a security analysis for both the obligation chain and the overall architecture and provide experimental tests that show its viability and quality.
The celebrated Nakamoto consensus protocol [16] ushered in several new consensus applications including cryptocurrencies. A few recent works [7, 17] have analyzed important properties of blockchains, including most significantly, consistency, which is a guarantee that all honest parties output the same sequence of blocks throughout the execution of the protocol. To establish consistency, the prior analysis of Pass, Seeman and Shelat [17] required a careful counting of certain combinatorial events that was difficult to apply to variations of Nakamoto. The work of Garay, Kiayas, and Leonardas [7] provides another method of analyzing the blockchain under the simplifying assumption that the network was synchronous. The contribution of this paper is the development of a simple Markov-chain based method for analyzing consistency properties of blockchain protocols. The method includes a formal way of stating strong concentration bounds as well as easy ways to concretely compute the bounds. We use our new method to answer a number of basic questions about consistency of blockchains: Our new analysis provides a tighter guarantee on the consistency property of Nakamoto's protocol, including for parameter regimes which [17] could not consider; We analyze a family of delaying attacks first presented in [17], and extend them to other protocols; We analyze how long a participant should wait before considering a high-value transaction "confirmed"; We analyze the consistency of CliqueChain, a variation of the Chainweb [14] system; We provide the first rigorous consistency analysis of GHOST [20] and also analyze a folklore "balancing"-attack. In each case, we use our framework to experimentally analyze the consensus bounds for various network delay parameters and adversarial computing percentages. We hope our techniques enable authors of future blockchain proposals to provide a more rigorous analysis of their schemes.
Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.
The development of Vehicular Ad-hoc NETwork (VANET) has brought many conveniences to human beings, but also brings a very prominent security problem. The traditional solution to the security problem is based on centralized approach which requires a trusted central entity which exists a single point of failure problem. Moreover, there is no approach of technical level to ensure security of data. Therefore, this paper proposes a security architecture of VANET based on blockchain and mobile edge computing. The architecture includes three layers, namely perception layer, edge computing layer and service layer. The perception layer ensures the security of VANET data in the transmission process through the blockchain technology. The edge computing layer provides computing resources and edge cloud services to the perception layer. The service layer uses the combination of traditional cloud storage and blockchain to ensure the security of data.
Public key infrastructure (PKI) is the foundation and core of network security construction. Blockchain (BC) has many technical characteristics, such as decentralization, impossibility of being tampered with and forged, which makes it have incomparable advantages in ensuring information credibility, security, traceability and other aspects of traditional technology. In this paper, a method of constructing PKI certificate system based on permissioned BC is proposed. The problems of multi-CA mutual trust, poor certificate configuration efficiency and single point failure in digital certificate system are solved by using the characteristics of BC distribution and non-tampering. At the same time, in order to solve the problem of identity privacy on BC, this paper proposes a privacy-aware PKI system based on permissioned BCs. This system is an anonymous digital certificate publishing scheme., which achieves the separation of user registration and authorization, and has the characteristics of anonymity and conditional traceability, so as to realize to protect user's identity privacy. The system meets the requirements of certificate security and anonymity, reduces the cost of CA construction, operation and maintenance in traditional PKI technology, and improves the efficiency of certificate application and configuration.
The Blockchain is an emerging paradigm that could solve security and trust issues for Internet of Things (IoT) platforms. We recently introduced in an IETF draft (“Blockchain Transaction Protocol for Constraint Nodes”) the BIoT paradigm, whose main idea is to insert sensor data in blockchain transactions. Because objects are not logically connected to blockchain platforms, controller entities forward all information needed for transaction forgery. Never less in order to generate cryptographic signatures, object needs some trusted computing resources. In previous papers we proposed the Four-Quater Architecture integrating general purpose unit (GPU), radio SoC, sensors/actuators and secure elements including TLS/DTLS stacks. These secure microcontrollers also manage crypto libraries required for blockchain operation. The BIoT concept has four main benefits: publication/duplication of sensors data in public and distributed ledgers, time stamping by the blockchain infrastructure, data authentication, and non repudiation.
The increasing deployment of smart meters at individual households has significantly improved people's experience in electricity bill payments and energy savings. It is, however, still challenging to guarantee the accurate detection of attacked meters' behaviors as well as the effective preservation of users'privacy information. In addition, rare existing research studies jointly consider both these two aspects. In this paper, we propose a Privacy-Preserving energy Theft Detection scheme (PPTD) to address the energy theft behaviors and information privacy issues in smart grid. Specifically, we use a recursive filter based on state estimation to estimate the user's energy consumption, and detect the abnormal data. During data transmission, we use the lightweight NTRU algorithm to encrypt the user's data to achieve privacy preservation. Security analysis demonstrates that in the PPTD scheme, only authorized units can transmit/receive data, and data privacy are also preserved. The performance evaluation results illustrate that our PPTD scheme can significantly reduce the communication and computation costs, and effectively detect abnormal users.
In the smart grid, residents' electricity usage needs to be periodically measured and reported for the purpose of better energy management. At the same time, real-time collection of residents' electricity consumption may unfavorably incur privacy leakage, which has motivated the research on privacy-preserving aggregation of electricity readings. Most previous studies either rely on a trusted third party (TTP) or suffer from expensive computation. In this paper, we first reveal the privacy flaws of a very recent scheme pursing privacy preservation without relying on the TTP. By presenting concrete attacks, we show that this scheme has failed to meet the design goals. Then, for better privacy protection, we construct a new scheme called PMDA, which utilizes Shamir's secret sharing to allow smart meters to negotiate aggregation parameters in the absence of a TTP. Using only lightweight cryptography, PMDA efficiently supports multi-functional aggregation of the electricity readings, and simultaneously preserves residents' privacy. Theoretical analysis is provided with regard to PMDA's security and efficiency. Moreover, experimental data obtained from a prototype indicates that our proposal is efficient and feasible for practical deployment.
In this work, an approach for the automatic analysis of people trajectories is presented, using a multi-camera and card reader system. Data is first extracted from surveillance cameras and card readers to create trajectories which are sequences of paths and activities. A distance model is proposed to compare sequences and calculate similarities. The popular unsupervised model One-Class Support Vector Machine (One-Class SVM) is used to train a detector. The proposed method classifies trajectories as normal or abnormal and can be used in two modes: off-line and real-time. Experiments are based on data simulation corresponding to an attack scenario proposed by a security expert. Results show that the proposed method successfully detects the abnormal sequences in the scenario with very low false alarm rate.
The Internet of Things (IoT) is the network where physical devices, sensors, appliances and other different objects can communicate with each other without the need for human intervention. Wireless Sensor Networks (WSNs) are main building blocks of the IoT. Both the IoT and WSNs have many critical and non-critical applications that touch almost every aspect of our modern life. Unfortunately, these networks are prone to various types of security threats. Therefore, the security of IoT and WSNs became crucial. Furthermore, the resource limitations of the devices used in these networks complicate the problem. One of the most recent and effective approaches to address such challenges is machine learning. Machine learning inspires many solutions to secure the IoT and WSNs. In this paper, we survey the different threats that can attack both IoT and WSNs and the machine learning techniques developed to counter them.
Post-quantum secure communication has attracted much interest in recent years. Known computationally secure post-quantum key agreement protocols are resource intensive for small devices. These devices may need to securely send frequent short messages, for example to report the measurement of a sensor. Secure communication using physical assumptions provides information-theoretic security (and so quantum-safe) with small computational over-head. Security and efficiency analysis of these systems however is asymptotic. In this poster we consider two secure message communication systems, and derive and compare their security and efficiency for finite length messages. Our results show that these systems indeed provide an attractive alternative for post-quantum security.