Visible to the public Biblio

Found 4254 results

Filters: Keyword is security  [Clear All Filters]
2019-02-22
Mulinka, Pavol, Casas, Pedro.  2018.  Stream-Based Machine Learning for Network Security and Anomaly Detection. Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks. :1-7.

Data Stream Machine Learning is rapidly gaining popularity within the network monitoring community as the big data produced by network devices and end-user terminals goes beyond the memory constraints of standard monitoring equipment. Critical network monitoring applications such as the detection of anomalies, network attacks and intrusions, require fast and continuous mechanisms for on-line analysis of data streams. In this paper we consider a stream-based machine learning approach for network security and anomaly detection, applying and evaluating multiple machine learning algorithms in the analysis of continuously evolving network data streams. The continuous evolution of the data stream analysis algorithms coming from the data stream mining domain, as well as the multiple evaluation approaches conceived for benchmarking such kind of algorithms makes it difficult to choose the appropriate machine learning model. Results of the different approaches may significantly differ and it is crucial to determine which approach reflects the algorithm performance the best. We therefore compare and analyze the results from the most recent evaluation approaches for sequential data on commonly used batch-based machine learning algorithms and their corresponding stream-based extensions, for the specific problem of on-line network security and anomaly detection. Similar to our previous findings when dealing with off-line machine learning approaches for network security and anomaly detection, our results suggest that adaptive random forests and stochastic gradient descent models are able to keep up with important concept drifts in the underlying network data streams, by keeping high accuracy with continuous re-training at concept drift detection times.

Jung, Jaemin, Choi, Jongmoo, Cho, Seong-je, Han, Sangchul, Park, Minkyu, Hwang, Youngsup.  2018.  Android Malware Detection Using Convolutional Neural Networks and Data Section Images. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :149-153.
The paper proposes a new technique to detect Android malware effectively based on converting malware binaries into images and applying machine learning techniques on those images. Existing research converts the whole executable files (e.g., DEX files in Android application package) of target apps into images and uses them for machine learning. However, the entire DEX file (consisting of header section, identifier section, data section, optional link data area, etc.) might contain noisy information for malware detection. In this paper, we convert only data sections of DEX files into grayscale images and apply machine learning on the images with Convolutional Neural Networks (CNN). By using only the data sections for 5,377 malicious and 6,249 benign apps, our technique reduces the storage capacity by 17.5% on average compared to using the whole DEX files. We apply two CNN models, Inception-v3 and Inception-ResNet-v2, which are known to be efficient in image processing, and examine the effectiveness of our technique in terms of accuracy. Experiment results show that the proposed technique achieves better accuracy with smaller storage capacity than the approach using the whole DEX files. Inception-ResNet-v2 with the stochastic gradient descent (SGD) optimization algorithm reaches 98.02% accuracy.
Meiser, Sebastian, Mohammadi, Esfandiar.  2018.  Tight on Budget?: Tight Bounds for r-Fold Approximate Differential Privacy Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :247-264.

Many applications, such as anonymous communication systems, privacy-enhancing database queries, or privacy-enhancing machine-learning methods, require robust guarantees under thousands and sometimes millions of observations. The notion of r-fold approximate differential privacy (ADP) offers a well-established framework with a precise characterization of the degree of privacy after r observations of an attacker. However, existing bounds for r-fold ADP are loose and, if used for estimating the required degree of noise for an application, can lead to over-cautious choices for perturbation randomness and thus to suboptimal utility or overly high costs. We present a numerical and widely applicable method for capturing the privacy loss of differentially private mechanisms under composition, which we call privacy buckets. With privacy buckets we compute provable upper and lower bounds for ADP for a given number of observations. We compare our bounds with state-of-the-art bounds for r-fold ADP, including Kairouz, Oh, and Viswanath's composition theorem (KOV), concentrated differential privacy and the moments accountant. While KOV proved optimal bounds for heterogeneous adaptive k-fold composition, we show that for concrete sequences of mechanisms tighter bounds can be derived by taking the mechanisms' structure into account. We compare previous bounds for the Laplace mechanism, the Gauss mechanism, for a timing leakage reduction mechanism, and for the stochastic gradient descent and we significantly improve over their results (except that we match the KOV bound for the Laplace mechanism, for which it seems tight). Our lower bounds almost meet our upper bounds, showing that no significantly tighter bounds are possible.

2019-02-18
Iwendi, C., Uddin, M., Ansere, J. A., Nkurunziza, P., Anajemba, J. H., Bashir, A. K..  2018.  On Detection of Sybil Attack in Large-Scale VANETs Using Spider-Monkey Technique. IEEE Access. 6:47258–47267.
Sybil security threat in vehicular ad hoc networks (VANETs) has attracted much attention in recent times. The attacker introduces malicious nodes with multiple identities. As the roadside unit fails to synchronize its clock with legitimate vehicles, unintended vehicles are identified, and therefore erroneous messages will be sent to them. This paper proposes a novel biologically inspired spider-monkey time synchronization technique for large-scale VANETs to boost packet delivery time synchronization at minimized energy consumption. The proposed technique is based on the metaheuristic stimulated framework approach by the natural spider-monkey behavior. An artificial spider-monkey technique is used to examine the Sybil attacking strategies on VANETs to predict the number of vehicular collisions in a densely deployed challenge zone. Furthermore, this paper proposes the pseudocode algorithm randomly distributed for energy-efficient time synchronization in two-way packet delivery scenarios to evaluate the clock offset and the propagation delay in transmitting the packet beacon message to destination vehicles correctly. The performances of the proposed technique are compared with existing protocols. It performs better over long transmission distances for the detection of Sybil in dynamic VANETs' system in terms of measurement precision, intrusion detection rate, and energy efficiency.
Singh, S., Saini, H. S..  2018.  Security approaches for data aggregation in Wireless Sensor Networks against Sybil Attack. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :190–193.
A wireless sensor network consists of many important elements like Sensors, Bass station and User. A Sensor can measure many non electrical quantities like pressure, temperature, sound, etc and transmit this information to the base station by using internal transreceiver. A security of this transmitted data is very important as the data may contain important information. As wireless sensor network have many application in the military and civil domains so security of wireless sensor network become a critical concern. A Sybil attack is one of critical attack which can affect the routing protocols, fair resourse allocation, data aggregation and misbehavior detection parameters of network. A number of detection techniques to detect Sybil nodes have already designed to overcome the Sybil attack. Out of all the techniques few techniques which can improve the true detection rate and reduce false detection rate are discussed in this paper.
Caballero-Gil, Pino, Caballero-Gil, Cándido, Molina-Gil, Jezabel.  2018.  Ubiquitous System to Monitor Transport and Logistics. Proceedings of the 15th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks. :71–75.
In the management of transport and logistics, which includes the delivery, movement and collection of goods through roads, ports and airports, participate, in general, many different actors. The most critical aspects of supply chain systems include time, space and interdependencies. Besides, there are several security challenges that can be caused both by unintentional and intentional errors. With all this in mind, this work proposes the combination of technologies such as RFID, GPS, WiFi Direct and LTE/3G to automate product authentication and merchandise tracking, reducing the negative effects caused either by mismanagement or attacks against the process of the supply chain. In this way, this work proposes a ubiquitous management scheme for the monitoring through the cloud of freight and logistics systems, including demand management, customization and automatic replenishment of out-of-stock goods. The proposal implies an improvement in the efficiency of the systems, which can be quantified in a reduction of time and cost in the inventory and distribution processes, and in a greater facility for the detection of counterfeit versions of branded articles. In addition, it can be used to create safer and more efficient schemes that help companies and organizations to improve the quality of the service and the traceability of the transported goods.
2019-02-14
Kong, F., Xu, M., Weimer, J., Sokolsky, O., Lee, I..  2018.  Cyber-Physical System Checkpointing and Recovery. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :22-31.

Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience enhancement for a system under emerging attacks in the environment of the controller. An effective way to address this problem is to make system state estimation accurate enough for control regardless of the compromised components. This work follows this way and develops a procedure named CPS checkpointing and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new concept of physical-state recovery. The essential operation is defined as rolling the system forward starting from a consistent historical system state. Second, we design a checkpointing protocol that defines how to record system states for the recovery. The protocol introduces a sliding window that accommodates attack-detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing and recovery that deals with compromised sensor measurements. At last, we evaluate our design through conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case study.

Nateghi, S., Shtessel, Y., Barbot, J., Zheng, G., Yu, L..  2018.  Cyber-Attack Reconstruction via Sliding Mode Differentiation and Sparse Recovery Algorithm: Electrical Power Networks Application. 2018 15th International Workshop on Variable Structure Systems (VSS). :285-290.

In this work, the unknown cyber-attacks on cyber-physical systems are reconstructed using sliding mode differentiation techniques in concert with the sparse recovery algorithm, when only several unknown attacks out of a long list of possible attacks are considered non-zero. The approach is applied to a model of the electric power system, and finally, the efficacy of the proposed techniques is illustrated via simulations of a real electric power system.

Leemaster, J., Vai, M., Whelihan, D., Whitman, H., Khazan, R..  2018.  Functionality and Security Co-Design Environment for Embedded Systems. 2018 IEEE High Performance Extreme Computing Conference (HPEC). :1-5.

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.

Anand, Priya, Ryoo, Jungwoo.  2018.  Architectural Solutions to Mitigate Security Vulnerabilities in Software Systems. Proceedings of the 13th International Conference on Availability, Reliability and Security. :5:1-5:5.

Security issues emerging out of the constantly evolving software applications became a huge challenge to software security experts. In this paper, we propose a prototype to detect vulnerabilities by identifying their architectural sources and also use security patterns to mitigate the identified vulnerabilities. We emphasize the need to consider architectural relations to introduce an effective security solution. In this research, we focused on the taint-style vulnerabilities that can induce injection-based attacks like XSS, SQLI in web applications. With numerous tools available to detect the taint-style vulnerabilities in the web applications, we scanned for the presence of repetition of a vulnerable code pattern in the software. Very importantly, we attempted to identify the architectural source files or modules by developing a tool named ArT Analyzer. We conducted a case study on a leading health-care software by applying the proposed architectural taint analysis and identified the vulnerable spots. We could identify the architectural roots for those vulnerable spots with the use of our tool ArT Analyzer. We verified the results by sharing it with the lead software architect of the project. By adopting an architectural solution, we avoided changes to be done on 252 different lines of code by merely introducing 2 lines of code changes at the architectural roots. Eventually, this solution was integrated into the latest updated release of the health-care software.

Sun, A., Gao, G., Ji, T., Tu, X..  2018.  One Quantifiable Security Evaluation Model for Cloud Computing Platform. 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD). :197-201.

Whatever one public cloud, private cloud or a mixed cloud, the users lack of effective security quantifiable evaluation methods to grasp the security situation of its own information infrastructure on the whole. This paper provides a quantifiable security evaluation system for different clouds that can be accessed by consistent API. The evaluation system includes security scanning engine, security recovery engine, security quantifiable evaluation model, visual display module and etc. The security evaluation model composes of a set of evaluation elements corresponding different fields, such as computing, storage, network, maintenance, application security and etc. Each element is assigned a three tuple on vulnerabilities, score and repair method. The system adopts ``One vote vetoed'' mechanism for one field to count its score and adds up the summary as the total score, and to create one security view. We implement the quantifiable evaluation for different cloud users based on our G-Cloud platform. It shows the dynamic security scanning score for one or multiple clouds with visual graphs and guided users to modify configuration, improve operation and repair vulnerabilities, so as to improve the security of their cloud resources.

Peng, H., Shoshitaishvili, Y., Payer, M..  2018.  T-Fuzz: Fuzzing by Program Transformation. 2018 IEEE Symposium on Security and Privacy (SP). :697-710.

Fuzzing is a simple yet effective approach to discover software bugs utilizing randomly generated inputs. However, it is limited by coverage and cannot find bugs hidden in deep execution paths of the program because the randomly generated inputs fail complex sanity checks, e.g., checks on magic values, checksums, or hashes. To improve coverage, existing approaches rely on imprecise heuristics or complex input mutation techniques (e.g., symbolic execution or taint analysis) to bypass sanity checks. Our novel method tackles coverage from a different angle: by removing sanity checks in the target program. T-Fuzz leverages a coverage-guided fuzzer to generate inputs. Whenever the fuzzer can no longer trigger new code paths, a light-weight, dynamic tracing based technique detects the input checks that the fuzzer-generated inputs fail. These checks are then removed from the target program. Fuzzing then continues on the transformed program, allowing the code protected by the removed checks to be triggered and potential bugs discovered. Fuzzing transformed programs to find bugs poses two challenges: (1) removal of checks leads to over-approximation and false positives, and (2) even for true bugs, the crashing input on the transformed program may not trigger the bug in the original program. As an auxiliary post-processing step, T-Fuzz leverages a symbolic execution-based approach to filter out false positives and reproduce true bugs in the original program. By transforming the program as well as mutating the input, T-Fuzz covers more code and finds more true bugs than any existing technique. We have evaluated T-Fuzz on the DARPA Cyber Grand Challenge dataset, LAVA-M dataset and 4 real-world programs (pngfix, tiffinfo, magick and pdftohtml). For the CGC dataset, T-Fuzz finds bugs in 166 binaries, Driller in 121, and AFL in 105. In addition, found 3 new bugs in previously-fuzzed programs and libraries.

Jenkins, J., Cai, H..  2018.  Leveraging Historical Versions of Android Apps for Efficient and Precise Taint Analysis. 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR). :265-269.

Today, computing on various Android devices is pervasive. However, growing security vulnerabilities and attacks in the Android ecosystem constitute various threats through user apps. Taint analysis is a common technique for defending against these threats, yet it suffers from challenges in attaining practical simultaneous scalability and effectiveness. This paper presents a novel approach to fast and precise taint checking, called incremental taint analysis, by exploiting the evolving nature of Android apps. The analysis narrows down the search space of taint checking from an entire app, as conventionally addressed, to the parts of the program that are different from its previous versions. This technique improves the overall efficiency of checking multiple versions of the app as it evolves. We have implemented the techniques as a tool prototype, EVOTAINT, and evaluated our analysis by applying it to real-world evolving Android apps. Our preliminary results show that the incremental approach largely reduced the cost of taint analysis, by 78.6% on average, yet without sacrificing the analysis effectiveness, relative to a representative precise taint analysis as the baseline.

Jain, Vivek, Rawat, Sanjay, Giuffrida, Cristiano, Bos, Herbert.  2018.  TIFF: Using Input Type Inference To Improve Fuzzing. Proceedings of the 34th Annual Computer Security Applications Conference. :505-517.

Developers commonly use fuzzing techniques to hunt down all manner of memory corruption vulnerabilities during the testing phase. Irrespective of the fuzzer, input mutation plays a central role in providing adequate code coverage, as well as in triggering bugs. However, each class of memory corruption bugs requires a different trigger condition. While the goal of a fuzzer is to find bugs, most existing fuzzers merely approximate this goal by targeting their mutation strategies toward maximizing code coverage. In this work, we present a new mutation strategy that maximizes the likelihood of triggering memory-corruption bugs by generating fewer, but better inputs. In particular, our strategy achieves bug-directed mutation by inferring the type of the input bytes. To do so, it tags each offset of the input with a basic type (e.g., 32-bit integer, string, array etc.), while deriving mutation rules for specific classes of bugs. We infer types by means of in-memory data-structure identification and dynamic taint analysis, and implement our novel mutation strategy in a fully functional fuzzer which we call TIFF (Type Inference-based Fuzzing Framework). Our evaluation on real-world applications shows that type-based fuzzing triggers bugs much earlier than existing solutions, while maintaining high code coverage. For example, on several real-world applications and libraries (e.g., poppler, mpg123 etc.), we find real bugs (with known CVEs) in almost half of the time and upto an order of magnitude fewer inputs than state-of-the-art fuzzers.

Bu, Lake, Kinsy, Michel A..  2018.  Hardening AES Hardware Implementations Against Fault and Error Inject Attacks. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :499-502.

The Advanced Encryption Standard (AES) enables secure transmission of confidential messages. Since its invention, there have been many proposed attacks against the scheme. For example, one can inject errors or faults to acquire the encryption keys. It has been shown that the AES algorithm itself does not provide a protection against these types of attacks. Therefore, additional techniques like error control codes (ECCs) have been proposed to detect active attacks. However, not all the proposed solutions show the adequate efficacy. For instance, linear ECCs have some critical limitations, especially when the injected errors are beyond their fault detection or tolerance capabilities. In this paper, we propose a new method based on a non-linear code to protect all four internal stages of the AES hardware implementation. With this method, the protected AES system is able to (a) detect all multiplicity of errors with a high probability and (b) correct them if the errors follow certain patterns or frequencies. Results shows that the proposed method provides much higher security and reliability to the AES hardware implementation with minimal overhead.

2019-02-13
Castellanos, John H., Ochoa, Martin, Zhou, Jianying.  2018.  Finding Dependencies Between Cyber-Physical Domains for Security Testing of Industrial Control Systems. Proceedings of the 34th Annual Computer Security Applications Conference. :582–594.

In modern societies, critical services such as transportation, power supply, water treatment and distribution are strongly dependent on Industrial Control Systems (ICS). As technology moves along, new features improve services provided by such ICS. On the other hand, this progress also introduces new risks of cyber attacks due to the multiple direct and indirect dependencies between cyber and physical components of such systems. Performing rigorous security tests and risk analysis in these critical systems is thus a challenging task, because of the non-trivial interactions between digital and physical assets and the domain-specific knowledge necessary to analyse a particular system. In this work, we propose a methodology to model and analyse a System Under Test (SUT) as a data flow graph that highlights interactions among internal entities throughout the SUT. This model is automatically extracted from production code available in Programmable Logic Controllers (PLCs). We also propose a reachability algorithm and an attack diagram that will emphasize the dependencies between cyber and physical domains, thus enabling a human analyst to gauge various attack vectors that arise from subtle dependencies in data and information propagation. We test our methodology in a functional water treatment testbed and demonstrate how an analyst could make use of our designed attack diagrams to reason on possible threats to various targets of the SUT.

Irmak, E., Erkek, İ.  2018.  An overview of cyber-attack vectors on SCADA systems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–5.

Most of the countries evaluate their energy networks in terms of national security and define as critical infrastructure. Monitoring and controlling of these systems are generally provided by Industrial Control Systems (ICSs) and/or Supervisory Control and Data Acquisition (SCADA) systems. Therefore, this study focuses on the cyber-attack vectors on SCADA systems to research the threats and risks targeting them. For this purpose, TCP/IP based protocols used in SCADA systems have been determined and analyzed at first. Then, the most common cyber-attacks are handled systematically considering hardware-side threats, software-side ones and the threats for communication infrastructures. Finally, some suggestions are given.

Ko, Ronny, Mickens, James.  2018.  DeadBolt: Securing IoT Deployments. Proceedings of the Applied Networking Research Workshop. :50–57.

In this paper, we introduce DeadBolt, a new security framework for managing IoT network access. DeadBolt hides all of the devices in an IoT deployment behind an access point that implements deny-by-default policies for both incoming and outgoing traffic. The DeadBolt AP also forces high-end IoT devices to use remote attestation to gain network access; attestation allows the devices to prove that they run up-to-date, trusted software. For lightweight IoT devices which lack the ability to attest, the DeadBolt AP uses virtual drivers (essentially, security-focused virtual network functions) to protect lightweight device traffic. For example, a virtual driver might provide network intrusion detection, or encrypt device traffic that is natively cleartext. Using these techniques, and several others, DeadBolt can prevent realistic attacks while imposing only modest performance costs.

Carpent, X., Tsudik, G., Rattanavipanon, N..  2018.  ERASMUS: Efficient remote attestation via self-measurement for unattended settings. 2018 Design, Automation Test in Europe Conference Exhibition (DATE). :1191–1194.
Remote attestation (RA) is a popular means of detecting malware in embedded and IoT devices. RA is usually realized as a protocol via which a trusted verifier measures software integrity of an untrusted remote device called prover. All prior RA techniques require on-demand operation. We identify two drawbacks of this approach in the context of unattended devices: First, it fails to detect mobile malware that enters and leaves the prover between successive RA instances. Second, it requires the prover to engage in a potentially expensive computation, which can negatively impact safety-critical or real-time devices. To this end, we introduce the concept of self-measurement whereby a prover periodically (and securely) measures and records its own software state. A verifier then collects and verifies these measurements. We demonstrate a concrete technique called ERASMUS, justify its features, and evaluate its performance. We show that ERASMUS is well-suited for safety-critical applications. We also define a new metric - Quality of Attestation (QoA).
Fawaz, A. M., Noureddine, M. A., Sanders, W. H..  2018.  POWERALERT: Integrity Checking Using Power Measurement and a Game-Theoretic Strategy. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :514–525.
We propose POWERALERT, an efficient external integrity checker for untrusted hosts. Current attestation systems suffer from shortcomings, including requiring a complete checksum of the code segment, from being static, use of timing information sourced from the untrusted machine, or using imprecise timing information such as network round-trip time. We address those shortcomings by (1) using power measurements from the host to ensure that the checking code is executed and (2) checking a subset of the kernel space over an extended period. We compare the power measurement against a learned power model of the execution of the machine and validate that the execution was not tampered. Finally, POWERALERT randomizes the integrity checking program to prevent the attacker from adapting. We model the interaction between POWERALERT and an attacker as a time-continuous game. The Nash equilibrium strategy of the game shows that POWERALERT has two optimal strategy choices: (1) aggressive checking that forces the attacker into hiding, or (2) slow checking that minimizes cost. We implement a prototype of POWERALERT using Raspberry Pi and evaluate the performance of the integrity checking program generation.
Dessouky, G., Abera, T., Ibrahim, A., Sadeghi, A..  2018.  LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.

Unlike traditional processors, embedded Internet of Things (IoT) devices lack resources to incorporate protection against modern sophisticated attacks resulting in critical consequences. Remote attestation (RA) is a security service to establish trust in the integrity of a remote device. While conventional RA is static and limited to detecting malicious modification to software binaries at load-time, recent research has made progress towards runtime attestation, such as attesting the control flow of an executing program. However, existing control-flow attestation schemes are inefficient and vulnerable to sophisticated data-oriented programming (DOP) attacks subvert these schemes and keep the control flow of the code intact. In this paper, we present LiteHAX, an efficient hardware-assisted remote attestation scheme for RISC-based embedded devices that enables detecting both control-flow attacks as well as DOP attacks. LiteHAX continuously tracks both the control-flow and data-flow events of a program executing on a remote device and reports them to a trusted verifying party. We implemented and evaluated LiteHAX on a RISC-V System-on-Chip (SoC) and show that it has minimal performance and area overhead.

Ammar, M., Washha, M., Crispo, B..  2018.  WISE: Lightweight Intelligent Swarm Attestation Scheme for IoT (The Verifier’s Perspective). 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
The growing pervasiveness of Internet of Things (IoT) expands the attack surface by connecting more and more attractive attack targets, i.e. embedded devices, to the Internet. One key component in securing these devices is software integrity checking, which typically attained with Remote Attestation (RA). RA is realized as an interactive protocol, whereby a trusted party, verifier, verifies the software integrity of a potentially compromised remote device, prover. In the vast majority of IoT applications, smart devices operate in swarms, thus triggering the need for efficient swarm attestation schemes.In this paper, we present WISE, the first intelligent swarm attestation protocol that aims to minimize the communication overhead while preserving an adequate level of security. WISE depends on a resource-efficient smart broadcast authentication scheme where devices are organized in fine-grained multi-clusters, and whenever needed, the most likely compromised devices are attested. The candidate devices are selected intelligently taking into account the attestation history and the diverse characteristics (and constraints) of each device in the swarm. We show that WISE is very suitable for resource-constrained embedded devices, highly efficient and scalable in heterogenous IoT networks, and offers an adjustable level of security.
Ahmed, N., Talib, M. A., Nasir, Q..  2018.  Program-flow attestation of IoT systems software. 2018 15th Learning and Technology Conference (L T). :67–73.
Remote attestation is the process of measuring the integrity of a device over the network, by detecting modification of software or hardware from the original configuration. Several remote software-based attestation mechanisms have been introduced, that rely on strict time constraints and other impractical constraints that make them inconvenient for IoT systems. Although some research is done to address these issues, they integrated trusted hardware devices to the attested devices to accomplish their aim, which is costly and not convenient for many use cases. In this paper, we propose “Dual Attestation” that includes two stages: static and dynamic. The static attestation phase checks the memory of the attested device. The dynamic attestation technique checks the execution correctness of the application code and can detect the runtime attacks. The objectives are to minimize the overhead and detect these attacks, by developing an optimized dynamic technique that checks the application program flow. The optimization will be done in the prover and the verifier sides.
Sion, Laurens, Yskout, Koen, Van Landuyt, Dimitri, Joosen, Wouter.  2018.  Knowledge-enriched Security and Privacy Threat Modeling. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. :290–291.
Creating secure and privacy-protecting systems entails the simultaneous coordination of development activities along three different yet mutually influencing dimensions: translating (security and privacy) goals to design choices, analyzing the design for threats, and performing a risk analysis of these threats in light of the goals. These activities are often executed in isolation, and such a disconnect impedes the prioritization of elicited threats, assessment which threats are sufficiently mitigated, and decision-making in terms of which risks can be accepted. In the proposed TMaRA approach, we facilitate the simultaneous consideration of these dimensions by integrating support for threat modeling, risk analysis, and design decisions. Key risk assessment inputs are systematically modeled and threat modeling efforts are fed back into the risk management process. This enables prioritizing threats based on their estimated risk, thereby providing decision support in the mitigation, acceptance, or transferral of risk for the system under design.
2019-02-08
Kılın\c c, H. H., Acar, O. F..  2018.  Analysis of Attack and Attackers on VoIP Honeypot Environment. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1-4.

This work explores attack and attacker profiles using a VoIP-based Honeypot. We implemented a low interaction honeypot environment to identify the behaviors of the attackers and the services most frequently used. We watched honeypot for 180 days and collected 242.812 events related to FTP, SIP, MSSQL, MySQL, SSH, SMB protocols. The results provide an in-depth analysis about both attacks and attackers profile, their tactics and purposes. It also allows understanding user interaction with a vulnerable honeypot environment.