Visible to the public Biblio

Found 147 results

Filters: Keyword is industrial control  [Clear All Filters]
2022-06-09
Ude, Okechukwu, Swar, Bobby.  2021.  Securing Remote Access Networks Using Malware Detection Tools for Industrial Control Systems. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :166–171.
With their role as an integral part of its infrastructure, Industrial Control Systems (ICS) are a vital part of every nation's industrial development drive. Despite several significant advancements - such as controlled-environment agriculture, automated train systems, and smart homes, achieved in critical infrastructure sectors through the integration of Information Systems (IS) and remote capabilities with ICS, the fact remains that these advancements have introduced vulnerabilities that were previously either nonexistent or negligible, one being Remote Access Trojans (RATs). Present RAT detection methods either focus on monitoring network traffic or studying event logs on host systems. This research's objective is the detection of RATs by comparing actual utilized system capacity to reported utilized system capacity. To achieve the research objective, open-source RAT detection methods were identified and analyzed, a GAP-analysis approach was used to identify the deficiencies of each method, after which control algorithms were developed into source code for the solution.
Atluri, Venkata, Horne, Jeff.  2021.  A Machine Learning based Threat Intelligence Framework for Industrial Control System Network Traffic Indicators of Compromise. SoutheastCon 2021. :1–5.
Cyber-attacks on our Nation's Critical Infrastructure are growing. In this research, a Cyber Threat Intelligence (CTI) framework is proposed, developed, and tested. The results of the research, using 5 different simulated attacks on a dataset from an Industrial Control System (ICS) testbed, are presented with the extracted IOCs. The Bagging Decision Trees model showed the highest performance of testing accuracy (94.24%), precision (0.95), recall (0.93), and F1-score (0.94) among the 9 different machine learning models studied.
Pyatnitsky, Ilya A., Sokolov, Alexander N..  2021.  Determination of the Optimal Ratio of Normal to Anomalous Points in the Problem of Detecting Anomalies in the Work of Industrial Control Systems. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0478–0480.

Algorithms for unsupervised anomaly detection have proven their effectiveness and flexibility, however, first it is necessary to calculate with what ratio a certain class begins to be considered anomalous by the autoencoder. For this reason, we propose to conduct a study of the efficiency of autoencoders depending on the ratio of anomalous and non-anomalous classes. The emergence of high-speed networks in electric power systems creates a tight interaction of cyberinfrastructure with the physical infrastructure and makes the power system susceptible to cyber penetration and attacks. To address this problem, this paper proposes an innovative approach to develop a specification-based intrusion detection framework that leverages available information provided by components in a contemporary power system. An autoencoder is used to encode the causal relations among the available information to create patterns with temporal state transitions, which are used as features in the proposed intrusion detection. This allows the proposed method to detect anomalies and cyber attacks.

Jie, Chen.  2021.  Information Security Risk Assessment of Industrial Control System Based on Hybrid Genetic Algorithms. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :423–426.
In order to solve the problem of quantitative assessment of information security risks in industrial control systems, this paper proposes a method of information security risk assessment for industrial control systems based on modular hybrid genetic algorithm. Combining with the characteristics of industrial control systems, the use of hybrid genetic algorithm evidence theory to identify, evaluate and assess assets and threats, and ultimately come to the order of the size of the impact of security threats on the specific industrial control system information security. This method can provide basis for making decisions to reduce information security risks in the control system from qualitative and quantitative aspects.
AlMedires, Motaz, AlMaiah, Mohammed.  2021.  Cybersecurity in Industrial Control System (ICS). 2021 International Conference on Information Technology (ICIT). :640–647.
The paper gives an overview of the ICS security and focuses on Control Systems. Use of internet had security challenges which led to the development of ICS which is designed to be dependable and safe. PCS, DCS and SCADA all are subsets of ICS. The paper gives a description of the developments in the ICS security and covers the most interesting work done by researchers. The paper also provides research information about the parameters on which a remotely executed cyber-attack depends.
Trifonov, Roumen, Manolov, Slavcho, Yoshinov, Radoslav, Tsochev, Georgy, Pavlova, Galya.  2021.  Applying the Experience of Artificial Intelligence Methods for Information Systems Cyber Protection at Industrial Control Systems. 2021 25th International Conference on Circuits, Systems, Communications and Computers (CSCC). :21–25.
The rapid development of the Industry 4.0 initiative highlights the problems of Cyber-security of Industrial Computer Systems and, following global trends in Cyber Defense, the implementation of Artificial Intelligence instruments. The authors, having certain achievement in the implementation of Artificial Intelligence tools in Cyber Protection of Information Systems and, more precisely, creating and successfully experimenting with a hybrid model of Intrusion Detection and Prevention System (IDPS), decided to study and experiment with the possibility of applying a similar model to Industrial Control Systems. This raises the question: can the experience of applying Artificial Intelligence methods in Information Systems, where this development went beyond the experimental phase and has entered into the real implementation phase, be useful for experimenting with these methods in Industrial Systems.
Ali, Jokha.  2021.  Intrusion Detection Systems Trends to Counteract Growing Cyber-Attacks on Cyber-Physical Systems. 2021 22nd International Arab Conference on Information Technology (ACIT). :1–6.
Cyber-Physical Systems (CPS) suffer from extendable vulnerabilities due to the convergence of the physical world with the cyber world, which makes it victim to a number of sophisticated cyber-attacks. The motives behind such attacks range from criminal enterprises to military, economic, espionage, political, and terrorism-related activities. Many governments are more concerned than ever with securing their critical infrastructure. One of the effective means of detecting threats and securing their infrastructure is the use of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). A number of studies have been conducted and proposed to assess the efficacy and effectiveness of IDS through the use of self-learning techniques, especially in the Industrial Control Systems (ICS) era. This paper investigates and analyzes the utilization of IDS systems and their proposed solutions used to enhance the effectiveness of such systems for CPS. The targeted data extraction was from 2011 to 2021 from five selected sources: IEEE, ACM, Springer, Wiley, and ScienceDirect. After applying the inclusion and exclusion criteria, 20 primary studies were selected from a total of 51 studies in the field of threat detection in CPS, ICS, SCADA systems, and the IoT. The outcome revealed the trends in recent research in this area and identified essential techniques to improve detection performance, accuracy, reliability, and robustness. In addition, this study also identified the most vulnerable target layer for cyber-attacks in CPS. Various challenges, opportunities, and solutions were identified. The findings can help scholars in the field learn about how machine learning (ML) methods are used in intrusion detection systems. As a future direction, more research should explore the benefits of ML to safeguard cyber-physical systems.
2022-04-25
Mahendra, Lagineni, Kumar, R.K. Senthil, Hareesh, Reddi, Bindhumadhava, B.S., Kalluri, Rajesh.  2021.  Deep Security Scanner for Industrial Control Systems. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). :447–452.

with the continuous growing threat of cyber terrorism, the vulnerability of the industrial control systems (ICS) is the most common subject for security researchers now. Attacks on ICS systems keep increasing and their impact leads to human safety issues, equipment damage, system down, unusual output, loss of visibility and control, and various other catastrophic failures. Many of the industrial control systems are relatively insecure with chronic and pervasive vulnerabilities. Modbus-Tcpis one of the widely used communication protocols in the ICS/ Supervisory control and data acquisition (SCADA) system to transmit signals from instrumentation and control devices to the main controller of the control center. Modbus is a plain text protocol without any built-in security mechanisms, and Modbus is a standard communication protocol, widely used in critical infrastructure applications such as power systems, water, oil & gas, etc.. This paper proposes a passive security solution called Deep-security-scanner (DSS) tailored to Modbus-Tcpcommunication based Industrial control system (ICS). DSS solution detects attacks on Modbus-TcpIcs networks in a passive manner without disturbing the availability requirements of the system.

2022-03-25
Shi, Peng, Chen, Xuebing, Kong, Xiangying, Cao, Xianghui.  2021.  SE-IDS: A Sample Equalization Method for Intrusion Detection in Industrial Control System. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :189—195.

With the continuous emergence of cyber attacks, the security of industrial control system (ICS) has become a hot issue in academia and industry. Intrusion detection technology plays an irreplaceable role in protecting industrial system from attacks. However, the imbalance between normal samples and attack samples seriously affects the performance of intrusion detection algorithms. This paper proposes SE-IDS, which uses generative adversarial networks (GAN) to expand the minority to make the number of normal samples and attack samples relatively balanced, adopts particle swarm optimization (PSO) to optimize the parameters of LightGBM. Finally, we evaluated the performance of the proposed model on the industrial network dataset.

2022-03-14
Ouyang, Yuankai, Li, Beibei, Kong, Qinglei, Song, Han, Li, Tao.  2021.  FS-IDS: A Novel Few-Shot Learning Based Intrusion Detection System for SCADA Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

Supervisory control and data acquisition (SCADA) networks provide high situational awareness and automation control for industrial control systems, whilst introducing a wide range of access points for cyber attackers. To address these issues, a line of machine learning or deep learning based intrusion detection systems (IDSs) have been presented in the literature, where a large number of attack examples are usually demanded. However, in real-world SCADA networks, attack examples are not always sufficient, having only a few shots in many cases. In this paper, we propose a novel few-shot learning based IDS, named FS-IDS, to detect cyber attacks against SCADA networks, especially when having only a few attack examples in the defenders’ hands. Specifically, a new method by orchestrating one-hot encoding and principal component analysis is developed, to preprocess SCADA datasets containing sufficient examples for frequent cyber attacks. Then, a few-shot learning based preliminary IDS model is designed and trained using the preprocessed data. Last, a complete FS-IDS model for SCADA networks is established by further training the preliminary IDS model with a few examples for cyber attacks of interest. The high effectiveness of the proposed FS-IDS, in detecting cyber attacks against SCADA networks with only a few examples, is demonstrated by extensive experiments on a real SCADA dataset.

Sabev, Evgeni, Trifonov, Roumen, Pavlova, Galya, Rainova, Kamelia.  2021.  Cybersecurity Analysis of Wind Farm SCADA Systems. 2021 International Conference on Information Technologies (InfoTech). :1—5.
Industry 4.0 or also known as the fourth industrial revolution poses a great cybersecurity risk for Supervisory control and data acquisition (SCADA) systems. Nowadays, lots of enterprises have turned into renewable energy and are changing the energy dependency to be on wind power. The SCADA systems are often vulnerable against different kinds of cyberattacks and thus allowing intruders to successfully and intrude exfiltrate different wind farm SCADA systems. During our research a future concept testbed of a wind farm SCADA system is going to be introduced. The already existing real-world vulnerabilities that are identified are later on going to be demonstrated against the test SCADA wind farm system.
2022-03-02
Zhang, Deng, Wang, Junkai.  2021.  Research on Security Protection Method of Industrial Control Boundary Network. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :560–563.
Aiming at the problems of single protection, lack of monitoring and unable to be physically isolated in time under abnormal conditions, an industrial control boundary network security protection method is provided. Realize the real-time monitoring and analysis of the network behavior of the industrial control boundary, realize the in-depth defense of the industrial control boundary, and timely block it in the way of logical link and physical link isolation in case of illegal intrusion, so as to comprehensively improve the protection level of the boundary security of the industrial control system.
2022-02-10
Bi, Ting, Chen, Xuehong, Li, Jun, Yang, Shuaifeng.  2020.  Research on Industrial Data Desensitization Algorithm Based on Fuzzy Set. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :1–5.
With the rapid development of internet technology, informatization and digitalization have penetrated into every link of human social life. A large amount of sensitive data has been accumulated and is still being generated within the enterprise. These sensitive data runs through the daily operation of enterprises and is widely used in business analysis, development and testing, and even some outsourcing business scenarios, which are increasing the possibility of sensitive data leakage and tampering. In fact, due to the improper use of data and the lack of protective measures and other reasons, data leakage events have happened again and again. Therefore, by introducing the concept of fuzzy set and using the membership function method, this paper proposes a desensitization technology framework for industrial data and a data desensitization algorithm based on fuzzy set, and verifies the desensitization effect and protective action on sensitive data of this algorithm through the test data desensitization experiment.
2022-02-04
Cervini, James, Rubin, Aviel, Watkins, Lanier.  2021.  A Containerization-Based Backfit Approach for Industrial Control System Resiliency. 2021 IEEE Security and Privacy Workshops (SPW). :246–252.
Many industrial control systems (ICS) are reliant upon programmable logic controllers (PLCs) for their operations. As ICS and PLCs are increasingly targeted by cyber-attacks, research facilitating the resiliency of their physical processes is imperative. This paper proposes an approach which leverages PLC containerization, input/output (I/O) multiplexing, and orchestration to respond to cyber incidents and ensure continuity of critical processes. A proofof-concept capability was developed and evaluated on live ICS testbed environments. The experimental results indicate the approach is viable for control applications with soft real-time requirements.
2022-01-25
Nakhodchi, Sanaz, Zolfaghari, Behrouz, Yazdinejad, Abbas, Dehghantanha, Ali.  2021.  SteelEye: An Application-Layer Attack Detection and Attribution Model in Industrial Control Systems using Semi-Deep Learning. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–8.
The security of Industrial Control Systems is of high importance as they play a critical role in uninterrupted services provided by Critical Infrastructure operators. Due to a large number of devices and their geographical distribution, Industrial Control Systems need efficient automatic cyber-attack detection and attribution methods, which suggests us AI-based approaches. This paper proposes a model called SteelEye based on Semi-Deep Learning for accurate detection and attribution of cyber-attacks at the application layer in industrial control systems. The proposed model depends on Bag of Features for accurate detection of cyber-attacks and utilizes Categorical Boosting as the base predictor for attack attribution. Empirical results demonstrate that SteelEye remarkably outperforms state-of-the-art cyber-attack detection and attribution methods in terms of accuracy, precision, recall, and Fl-score.
Li, Wei, Si, Jing, Xing, Jianhua, Zhang, Yongjing, Liu, Deli, Sui, Zhiyuan.  2021.  Unified Attribute-Based Encryption Scheme for Industrial Internet of Things. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :12–16.
The Internet of Things (IoT) provides significant benefits for industry due to connect the devices together through the internet. Attribute-Based Encryption (ABE) is a technique can enforce an access control over data to guarantee the data security. In this paper, we propose an ABE scheme for data in industrial IoT. The scheme achieves both security and high performance. When there is a shared subpolicy among the access policies of a sensor, the scheme optimizes the encryption of the messages. Through analysis and simulation, we show that our solution is security and efficient.
2021-12-20
Tekeoglu, Ali, Bekiroglu, Korkut, Chiang, Chen-Fu, Sengupta, Sam.  2021.  Unsupervised Time-Series Based Anomaly Detection in ICS/SCADA Networks. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Traditionally, Industrial Control Systems (ICS) have been operated as air-gapped networks, without a necessity to connect directly to the Internet. With the introduction of the Internet of Things (IoT) paradigm, along with the cloud computing shift in traditional IT environments, ICS systems went through an adaptation period in the recent years, as the Industrial Internet of Things (IIoT) became popular. ICS systems, also called Cyber-Physical-Systems (CPS), operate on physical devices (i.e., actuators, sensors) at the lowest layer. An anomaly that effect this layer, could potentially result in physical damage. Due to the new attack surfaces that came about with IIoT movement, precise, accurate, and prompt intrusion/anomaly detection is becoming even more crucial in ICS. This paper proposes a novel method for real-time intrusion/anomaly detection based on a cyber-physical system network traffic. To evaluate the proposed anomaly detection method's efficiency, we run our implementation against a network trace taken from a Secure Water Treatment Testbed (SWAT) of iTrust Laboratory at Singapore.
2021-11-08
Cai, Junhui, Li, Qianmu.  2020.  Machine Learning-Based Threat Identification of Industrial Internet. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). :335–340.
In order to improve production and management efficiency, traditional industrial control systems are gradually connected to the Internet, and more likely to use advanced modern information technologies, such as cloud computing, big data technology, and artificial intelligence. Industrial control system is widely used in national key infrastructure. Meanwhile, a variety of attack threats and risks follow, and once the industrial control network suffers maliciously attack, the loss caused is immeasurable. In order to improve the security and stability of the industrial Internet, this paper studies the industrial control network traffic threat identification technology based on machine learning methods, including GK-SVDD, RNN and KPCA reconstruction error algorithm, and proposes a heuristic method for selecting Gaussian kernel width parameter in GK-SVDD to accelerate real-time threat detection in industrial control environments. Experiments were conducted on two public industrial control network traffic datasets. Compared with the existing methods, these methods can obtain faster detection efficiency and better threat identification performance.
Shang, Wenli, Zhang, Xiule, Chen, Xin, Liu, Xianda, Chen, Chunyu, Wang, Xiaopeng.  2020.  The Research and Application of Trusted Startup of Embedded TPM. 2020 39th Chinese Control Conference (CCC). :7669–7676.
In view of the security threats caused by the code execution vulnerability of the industrial control system, design the trusted security architecture of the industrial control system based on the embedded system. From the trusted startup of industrial control equipment, the safety protection for industrial control system is completed. The scheme is based on TPM and Xilinx Zynq-7030 to build an industrial trusted computing environment and complete the trusted startup process. Experiment shows that this method can effectively prevent the destruction of malicious code during the startup process of embedded system and provide technical support for the construction of trusted computing environment of industrial control system.
2021-09-07
Zhang, Yaofang, Wang, Bailing, Wu, Chenrui, Wei, Xiaojie, Wang, Zibo, Yin, Guohua.  2020.  Attack Graph-Based Quantitative Assessment for Industrial Control System Security. 2020 Chinese Automation Congress (CAC). :1748–1753.
Industrial control systems (ICSs) are facing serious security challenges due to their inherent flaws, and emergence of vulnerabilities from the integration with commercial components and networks. To that end, assessing the security plays a vital role for current industrial enterprises which are responsible for critical infrastructure. This paper accomplishes a complex task of quantitative assessment based on attack graphs in order to look forward critical paths. For the purpose of application to a large-scale heterogeneous ICSs, we propose a flexible attack graph generation algorithm is proposed with the help of the graph data model. Hereafter, our quantitative assessment takes a consideration of graph indicators on specific nodes and edges to get the security metrics. In order to improve results of obtaining the critical attack path, we introduced a formulating selection rule, considering the asset value of industrial control devices. The experimental results show validation and verification of the proposed method.
2021-08-17
Tychalas, Dimitrios, Maniatakos, Michail.  2020.  IFFSET: In-Field Fuzzing of Industrial Control Systems using System Emulation. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :662—665.
Industrial Control Systems (ICS) have evolved in the last decade, shifting from proprietary software/hardware to contemporary embedded architectures paired with open-source operating systems. In contrast to the IT world, where continuous updates and patches are expected, decommissioning always-on ICS for security assessment can incur prohibitive costs to their owner. Thus, a solution for routinely assessing the cybersecurity posture of diverse ICS without affecting their operation is essential. Therefore, in this paper we introduce IFFSET, a platform that leverages full system emulation of Linux-based ICS firmware and utilizes fuzzing for security evaluation. Our platform extracts the file system and kernel information from a live ICS device, building an image which is emulated on a desktop system through QEMU. We employ fuzzing as a security assessment tool to analyze ICS specific libraries and find potential security threatening conditions. We test our platform with commercial PLCs, showcasing potential threats with no interruption to the control process.
2021-07-27
Su, K.-M., Liu, I.-H., Li, J.-S..  2020.  The Risk of Industrial Control System Programmable Logic Controller Default Configurations. 2020 International Computer Symposium (ICS). :443—447.
In recent years, many devices in industrial control systems (ICS) equip Ethernet modules for more efficient communication and more fiexible deployment. Many communication protocols of those devices are based on internet protocol, which brings the above benefits but also makes it easier to access by anyone including attackers. In the case of using the factory default configurations, we wiiˆ demonstrate how to easily modify the programmable logic controllers (PLCs) program through the Integrated Development Environment provided by the manufacturer under the security protection of PLC not set properly and discuss the severity of it.
2021-05-25
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
Alnsour, Rawan, Hamdan, Basil.  2020.  Incorporating SCADA Cybersecurity in Undergraduate Engineering Technology Information Technology Education. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—4.

The purpose of this paper is threefold. First, it makes the case for incorporating cybersecurity principles into undergraduate Engineering Technology Education and for incorporating Industrial Control Systems (ICS) principles into undergraduate Information Technology (IT)/Cybersecurity Education. Specifically, the paper highlights the knowledge/skill gap between engineers and IT/Cybersecurity professionals with respect to the cybersecurity of the ICS. Secondly, it identifies several areas where traditional IT systems and ICS intercept. This interception not only implies that ICS are susceptible to the same cyber threats as traditional IT/IS but also to threats that are unique to ICS. Subsequently, the paper identifies several areas where cybersecurity principles can be applied to ICS. By incorporating cybersecurity principles into Engineering Technology Education, the paper hopes to provide IT/Cybersecurity and Engineering Students with (a) the theoretical knowledge of the cybersecurity issues associated with administering and operating ICS and (b) the applied technical skills necessary to manage and mitigate the cyber risks against these systems. Overall, the paper holds the promise of contributing to the ongoing effort aimed at bridging the knowledge/skill gap with respect to securing ICS against cyber threats and attacks.

2021-05-05
Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).