Biblio
This paper studies the physical layer security (PLS) of a vehicular network employing a reconfigurable intelligent surface (RIS). RIS technologies are emerging as an important paradigm for the realisation of smart radio environments, where large numbers of small, low-cost and passive elements, reflect the incident signal with an adjustable phase shift without requiring a dedicated energy source. Inspired by the promising potential of RIS-based transmission, we investigate two vehicular network system models: One with vehicle-to-vehicle communication with the source employing a RIS-based access point, and the other model in the form of a vehicular adhoc network (VANET), with a RIS-based relay deployed on a building. Both models assume the presence of an eavesdropper to investigate the average secrecy capacity of the considered systems. Monte-Carlo simulations are provided throughout to validate the results. The results show that performance of the system in terms of the secrecy capacity is affected by the location of the RIS-relay and the number of RIS cells. The effect of other system parameters such as source power and eavesdropper distances are also studied.
With an increasing number of wireless devices, the risk of being eavesdropped increases as well. From information theory, it is well known that wiretap codes can asymptotically achieve vanishing decoding error probability at the legitimate receiver while also achieving vanishing leakage to eavesdroppers. However, under finite blocklength, there exists a tradeoff among different parameters of the transmission. In this work, we propose a flexible wiretap code design for Gaussian wiretap channels under finite blocklength by neural network autoencoders. We show that the proposed scheme has higher flexibility in terms of the error rate and leakage tradeoff, compared to the traditional codes.
This article presents a practical approach for secure key exchange exploiting reciprocity in wireless transmission. The method relies on the reciprocal channel phase to mask points of a Phase Shift Keying (PSK) constellation. Masking is achieved by adding (modulo 2π) the measured reciprocal channel phase to the PSK constellation points carrying some of the key bits. As the channel phase is uniformly distributed in [0, 2π], knowing the sum of the two phases does not disclose any information about any of its two components. To enlarge the key size over a static or slow fading channel, the Radio Frequency (RF) propagation path is perturbed to create independent realizations of multi-path fading. Prior techniques have relied on quantizing the reciprocal channel state measured at the two ends and thereby suffer from information leakage in the process of key consolidation (ensuring the two ends have access to the same key). The proposed method does not suffer from such shortcomings as raw key bits can be equipped with Forward Error Correction (FEC) without affecting the masking (zero information leakage) property. To eavesdrop a phase value shared in this manner, the Eavesdropper (Eve) would require to solve a system of linear equations defined over angles, each equation corresponding to a possible measurement by the Eve. Channel perturbation is performed such that each new channel state creates an independent channel realization for the legitimate nodes, as well as for each of Eves antennas. As a result, regardless of the Eves Signal-to-Noise Ratio (SNR) and number of antennas, Eve will always face an under-determined system of equations. On the other hand, trying to solve any such under-determined system of linear equations in terms of an unknown phase will not reveal any useful information about the actual answer, meaning that the distribution of the answer remains uniform in [0, 2π].
This paper investigates the problem of generating two secret keys (SKs) simultaneously over a five-terminal system with terminals labelled as 1, 2, 3, 4 and 5. Each of terminal 2 and terminal 3 wishes to generate an SK with terminal 1 over a public channel wiretapped by a passive eavesdropper. Terminal 4 and terminal 5 respectively act as a trusted helper and an untrusted helper to assist the SK generation. All the terminals observe correlated source sequences from discrete memoryless sources (DMS) and can exchange information over a public channel with no rate constraint that the eavesdropper has access to. Based on the considered model, key capacity region is fully characterized and a source coding scheme that can achieve the capacity region is provided. Furthermore, expression for key leakage rate is obtained to analyze the security performance of the two generated keys.
For secure and high-quality wireless transmission, we propose a chaos multiple-input multiple-output (C-MIMO) transmission scheme, in which physical layer security and a channel coding effect with a coding rate of 1 are obtained by chaotic MIMO block modulation. In previous studies, we introduced a log-likelihood ratio (LLR) to C-MIMO to exploit LLR-based outer channel coding and turbo decoding, and obtained further coding gain. However, we only studied the concatenation of turbo code, low-density parity check (LDPC) code, and convolutional code which were relatively high-complexity or weak codes; thus, outer code having further low-complexity and strong error correction ability were expected. In particular, a transmission system with short and good code is required for control signaling, such as in 5G networks. Therefore, in this paper, we propose a polar code concatenation to C-MIMO, and introduce soft successive decoding (SCAD) and soft successive cancellation list decoding (SSCLD) as LLR-based turbo decoding for polar code. We numerically evaluate the bit error rate performance of the proposed scheme, and compare it to the conventional LDPC-concatenated transmission.
Network security and data confidentiality of transmitted information are among the non-functional requirements of industrial wireless sensor networks (IWSNs) in addition to latency, reliability and energy efficiency requirements. Physical layer security techniques are promising solutions to assist cryptographic methods in the presence of an eavesdropper in IWSN setups. In this paper, we propose a physical layer security scheme, which is based on both insertion of an random error vector to forward error correction (FEC) codewords and transmission over decentralized relay nodes. Reed-Solomon and Golay codes are selected as FEC coding schemes and the security performance of the proposed model is evaluated with the aid of decoding error probability of an eavesdropper. The results show that security level is highly based on the location of the eavesdropper and secure communication can be achieved when some of channels between eavesdropper and relay nodes are significantly noisier.
In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.
We propose a new key sharing protocol executed through any constant parameter noiseless public channel (as Internet itself) without any cryptographic assumptions and protocol restrictions on SNR in the eavesdropper channels. This protocol is based on extraction by legitimate users of eigenvalues from randomly generated matrices. A similar protocol was proposed recently by G. Qin and Z. Ding. But we prove that, in fact, this protocol is insecure and we modify it to be both reliable and secure using artificial noise and privacy amplification procedure. Results of simulation prove these statements.