Visible to the public Biblio

Found 164 results

Filters: Keyword is physical layer security  [Clear All Filters]
2022-12-01
Jacob, Liya Mary, Sreelakshmi, P, Deepthi, P.P.  2021.  Physical Layer Security in Power Domain NOMA through Key Extraction. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
Non-orthogonal multiple access (NOMA) is emerging as a popular radio access technique to serve multiple users under the same resource block to improve spectral efficiency in 5G and 6G communication. But the resource sharing in NOMA causes concerns on data security. Since power domain NOMA exploits the difference in channel properties for bandwidth-efficient communication, it is feasible to ensure data confidentiality in NOMA communication through physical layer security techniques. In this work, we propose to ensure resistance against internal eavesdropping in NOMA communication through a secret key derived from channel randomness. A unique secret key is derived from the channel of each NOMA user; which is used to randomize the data of the respective user before superposition coding (SC) to prevent internal eavesdropping. The simulation results show that the proposed system provides very good security against internal eavesdropping in NOMA.
Torres-Figueroa, Luis, Mönich, Ullrich J., Voichtleitner, Johannes, Frank, Anna, Andrei, Vlad-Costin, Wiese, Moritz, Boche, Holger.  2021.  Experimental Evaluation of a Modular Coding Scheme for Physical Layer Security. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
In this paper we use a seeded modular coding scheme for implementing physical layer security in a wiretap scenario. This modular scheme consists of a traditional coding layer and a security layer. For the traditional coding layer, we use a polar code. We evaluate the performance of the seeded modular coding scheme in an experimental setup with software defined radios and compare these results to simulation results. In order to assess the secrecy level of the scheme, we employ the distinguishing security metric. In our experiments, we compare the distinguishing error rate for different seeds and block lengths.
Oh, Mi-Kyung, Lee, Sangjae, Kang, Yousung.  2021.  Wi-SUN Device Authentication using Physical Layer Fingerprint. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :160–162.
This paper aims to identify Wi-SUN devices using physical layer fingerprint. We first extract physical layer features based on the received Wi-SUN signals, especially focusing on device-specific clock skew and frequency deviation in FSK modulation. Then, these physical layer fingerprints are used to train a machine learning-based classifier and the resulting classifier finally identifies the authorized Wi-SUN devices. Preliminary experiments on Wi-SUN certified chips show that the authenticator with the proposed physical layer fingerprints can distinguish Wi-SUN devices with 100 % accuracy. Since no additional computational complexity for authentication is involved on the device side, our approach can be applied to any Wi-SUN based IoT devices with security requirements.
Starks, Brandon E., Robinson, Karsen, Sitaula, Binod, Chrysler, Andrew M..  2021.  Physical Layer Wireless Security Through the Rotation of Polarized Antennas. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). :1483–1484.
A wireless communication system with rotating linearly polarized antennas is built and tested as a method for increasing physical layer security. Controlling the linear polarization angle from 0° to 180° yields bit error rates greater than 20% for 40° of rotation.
Heinrichs, Markus, Kronberger, Rainer.  2021.  Digitally Tunable Frequency Selective Surface for a Physical Layer Security System in the 5 GHz Wi-Fi Band. 2020 International Symposium on Antennas and Propagation (ISAP). :267–268.
In this work, a digitally tunable Frequency Selec-tive Surface (FSS) for use in Physical Layer Security (PLS) systems is presented. The design of a unit cell is described, which is optimized by simulations for the frequency range of 5 GHz indoor Wi-Fi. Based on the developed unit cell, a prototype with 64 binary switchable elements is set up. The performance of the surface is demonstrated by measurements.
Fang, Xiaojie, Yin, Xinyu, Zhang, Ning, Sha, Xuejun, Zhang, Hongli, Han, Zhu.  2021.  Demonstrating Physical Layer Security Via Weighted Fractional Fourier Transform. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Recently, there has been significant enthusiasms in exploiting physical (PHY-) layer characteristics for secure wireless communication. However, most existing PHY-layer security paradigms are information theoretical methodologies, which are infeasible to real and practical systems. In this paper, we propose a weighted fractional Fourier transform (WFRFT) pre-coding scheme to enhance the security of wireless transmissions against eavesdropping. By leveraging the concept of WFRFT, the proposed scheme can easily change the characteristics of the underlying radio signals to complement and secure upper-layer cryptographic protocols. We demonstrate a running prototype based on the LTE-framework. First, the compatibility between the WFRFT pre-coding scheme and the conversational LTE architecture is presented. Then, the security mechanism of the WFRFT pre-coding scheme is demonstrated. Experimental results validate the practicability and security performance superiority of the proposed scheme.
2022-10-16
Özmat, Utku, Demirkol, Mehmet Fatih, Demirci, Nuran, Yazıcı, Mehmet Akif.  2020.  Enhancing Physical Layer Security with Coordinated Multi-Point Transmission in 5G and Beyond Networks. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
Physical layer security has gained importance with the widespread use of wireless communication systems. Multiantenna systems and multi-point transmission techniques in 5G and beyond are promising techniques not only for enhancing data rates, but also physical layer security. Coordinated multipoint transmission is used for enhancing the service quality and decreasing inter-cell interference especially for cell-edge users. In this study, analysis of physical layer security enhancement via multi-antenna technologies and coordinated multi-point for 5G and beyond networks is provided. The proposed scheme is evaluated on calculations from real-life mobile network topologies. As a figure of performance, the secure and successful detection probability is computed with varying antenna array size, number of coordinated transmission points, and different service requirements.
Koşu, Semiha, Ata, Serdar Özgür, Durak-Ata, Lütfiye.  2020.  Physical Layer Security Analysis of Cooperative Mobile Communication Systems with Eavesdropper Employing MRC. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
In this paper, physical layer security (PLS) analysis of a cooperative wireless communication system in which the source and destination nodes communicate via a relay employing decode-and-forward protocol is performed for double Rayleigh fading channel model. For the system where the source, relay and target have single antenna, an eavesdropper with multiantenna listens the source and relay together by using maximum-ratio-combining, secrecy outage and positive secrecy capacity possibilities are obtained in closed-form. The theoretical results are verified by Monte-Carlo simulations. From the results, it is observed that as the number of antennas of the eavesdropper is increased, the PLS performance of the system worsens.
Shi, Yongpeng, Gao, Ya, Xia, Yujie.  2020.  Secrecy Performance Analysis in Internet of Satellites: Physical Layer Security Perspective. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1185–1189.
As the latest evolving architecture of space networks, Internet of Satellites (IoSat) is regarded as a promising paradigm in the future beyond 5G and 6G wireless systems. However, due to the extremely large number of satellites and open links, it is challenging to ensure communication security in IoSat, especially for wiretap resisting. To the best of our knowledge, it is an entirely new problem to study the security issue in IoSat, since existing works concerning physical layer security (PLS) in satellite networks mainly focused on the space-to-terrestrial links. It is also noted that, we are the first to investigate PLS problem in IoSat. In light of this, we present in this paper an analytical model of PLS in IoSat where a terrestrial transmitter delivers its information to multi-satellite in the presence of eavesdroppers. By adopting the key parameters such as satellites' deployment density, minimum elevation angle, and orbit height, two major secrecy metric including average secrecy capacity and probability are derived and analyzed. As demonstrated by extensive numerical results, the presented theoretical framework can be utilized to efficiently evaluate the secrecy performance of IoSat, and guide the design and optimization for communication security in such systems.
Song, Xiumin, Liu, Bo, Zhang, Hongxin, Mao, Yaya, Ren, Jianxin, Chen, Shuaidong, Xu, Hui, Zhang, Jingyi, Jiang, Lei, Zhao, Jianye et al..  2020.  Security Enhancing and Probability Shaping Coordinated Optimization for CAP-PON in Physical Layer. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
A secure-enhanced scheme based on deoxyribonucleic acid (DNA) encoding encryption and probabilistic shaping (PS) is proposed. Experimental results verify the superiority of our proposed scheme in the achievement of security and power gain. © 2020 The Author(s).
Bouhafs, Faycal, den Hartog, Frank, Raschella, Alessandro, Mackay, Michael, Shi, Qi, Sinanovic, Sinan.  2020.  Realizing Physical Layer Security in Large Wireless Networks using Spectrum Programmability. 2020 IEEE Globecom Workshops (GC Wkshps. :1–6.
This paper explores a practical approach to securing large wireless networks by applying Physical Layer Security (PLS). To date, PLS has mostly been seen as an information theory concept with few practical implementations. We present an Access Point (AP) selection algorithm that uses PLS to find an AP that offers the highest secrecy capacity to a legitimate user. We then propose an implementation of this algorithm using the novel concept of spectrum programming which extends Software-Defined Networking to the physical and data-link layers and makes wireless network management and control more flexible and scalable than traditional platforms. Our Wi-Fi network evaluation results show that our approach outperforms conventional solutions in terms of security, but at the expense of communication capacity, thus identifying a trade-off between security and performance. These results encourage implementation and extension to further wireless technologies.
Arfaoui, Amel, Kribeche, Ali, Senouci, Sidi Mohammed.  2020.  Cooperative MIMO for Adaptive Physical Layer Security in WBAN. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–7.
Internet of Things (IoT) is becoming an emerging paradigm to provide pervasive connectivity where “anything“ can be connected “anywhere” at “anytime” via massive deployment of physical objects like sensors, controllers, and actuators. However, the open nature of wireless communications and the energy constraint of the IoT devices impose strong security concerns. In this context, traditional cryptographic techniques may not be suitable in such a resource-constrained network. To address this problem, an effective security solution that ensures a trade-off between security effectiveness and energy efficiency is required. In this paper, we exploit cooperative transmission between sensor nodes in IoT for e-Health application, as a promising technique to enhance the physical layer security of wireless communications in terms of secrecy capacity while considering the resource-impoverished devices. Specifically, we propose a dynamic and cooperative virtual multiple-input and multiple-output (MIMO) configuration approach based on game theory to preserve the confidentiality of the transmitted messages with high energy savings. For this purpose, we model the physical layer security cooperation problem as a non-transferable coalition formation game. The set of cooperative devices form a virtual dynamically-configured MIMO network that is able to securely and efficiently transmit data to the destination. Simulation results show that the proposed game-based virtual MIMO configuration approach can improve the average secrecy capacity per device as well as the network lifetime compared to non-cooperative transmission.
Natalino, Carlos, di Giglio, Andrea, Schiano, Marco, Furdek, Marija.  2020.  Root Cause Analysis for Autonomous Optical Networks: A Physical Layer Security Use Case. 2020 European Conference on Optical Communications (ECOC). :1–4.
To support secure and reliable operation of optical networks, we propose a framework for autonomous anomaly detection, root cause analysis and visualization of the anomaly impact on optical signal parameters. Verification on experimental physical layer security data reveals important properties of different attack profiles.
Lipps, Christoph, Mallikarjun, Sachinkumar Bavikatti, Strufe, Matthias, Heinz, Christopher, Grimm, Christoph, Schotten, Hans Dieter.  2020.  Keep Private Networks Private: Secure Channel-PUFs, and Physical Layer Security by Linear Regression Enhanced Channel Profiles. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :93–100.
In the context of a rapidly changing and increasingly complex (industrial) production landscape, securing the (communication) infrastructure is becoming an ever more important but also more challenging task - accompanied by the application of radio communication. A worthwhile and promising approach to overcome the arising attack vectors, and to keep private networks private, are Physical Layer Security (PhySec) implementations. The paper focuses on the transfer of the IEEE802.11 (WLAN) PhySec - Secret Key Generation (SKG) algorithms to Next Generation Mobile Networks (NGMNs), as they are the driving forces and key enabler of future industrial networks. Based on a real world Long Term Evolution (LTE) testbed, improvements of the SKG algorithms are validated. The paper presents and evaluates significant improvements in the establishment of channel profiles, whereby especially the Bit Disagreement Rate (BDR) can be improved substantially. The combination of the Discrete Cosine Transformation (DCT) and the supervised Machine Learning (ML) algorithm - Linear Regression (LR) - provides outstanding results, which can be used beyond the SKG application. The evaluation also emphasizes the appropriateness of PhySec for securing private networks.
Zhang, Ming, Shang, Yong, Zhao, Yaohuan.  2020.  Strategy of Relay Selection and Cooperative Jammer Beamforming in Physical Layer Security. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–6.
In this paper, a novel strategy of relay selection and cooperative jammer beamforming is proposed. The proposed scheme selects one node from the intermediate nodes as relay and the rest nodes as friendly jammers. The relay operates in amplify-and-forward (AF) strategy. Jammer weights are derived to null the jamming signals at the destination and relay node and maximize the jamming signal at the eavesdropper. Furthermore, a closed-form optimal solution of power allocation between the selected relay and cooperative jammers is derived. Numerical simulation results show that the proposed scheme can outperform the conventional schemes at the same power consumption.
Chen, Kejin, Yang, Shiwen, Chen, Yikai, Qu, Shi-Wei, Hu, Jun.  2020.  Improving Physical Layer Security Technique Based on 4-D Antenna Arrays with Pre-Modulation. 2020 14th European Conference on Antennas and Propagation (EuCAP). :1–3.
Four-dimensional (4-D) antenna arrays formed by introducing time as the forth controlling variable are able to be used to regulate the radiation fields in space, time and frequency domains. Thus, 4-D antenna arrays are actually the excellent platform for achieving physical layer secure transmission. However, traditional direction modulation technique of 4-D antenna arrays always inevitably leads to higher sidelobe level of radiation pattern or less randomness. Regarding to the problem, this paper proposed a physical layer secure transmission technique based on 4-D antenna arrays, which combine the advantages of traditional phased arrays, and 4-D arrays for improving the physical layer security in wireless networks. This technique is able to reduce the radiated power at sidelobe region by optimizing the time sequences. Moreover, the signal distortion caused by time modulation can be compensated in the desired direction by pre-modulating transmitted signals.
2022-07-01
Camilo, Marcelo, Moura, David, Salles, Ronaldo.  2021.  Combined Interference and Communications strategy evaluation as a defense mechanism in typical Cognitive Radio Military Networks. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1—8.
Physical layer security has a paramount importance in tactical wireless networks. Traditional approaches may not fulfill all requirements, demanding additional sophisticated techniques. Thus, Combined Interference and Communications (CIC) emerges as a strategy against message interception in Cognitive Radio Military Networks (CRMN). Since CIC adopts an interference approach under specific CRMN requirements and characteristics, it saves great energy and reduces the receiver detection factor when compared to previous proposals in the literature. However, previous CIC analyses were conducted under vaguely realistic channel models. Thus, the focus of this paper is two-fold. Firstly, we identify more realistic channel models to achieve tactical network scenario channel parameters. Additionally, we use such parameters to evaluate CIC suitability to increase CRMN physical layer security. Numerical experiments and emulations illustrate potential impairments on previous work due to the adoption of unrealistic channel models, concluding that CIC technique remains as an upper limit to increase physical layer security in CRMN.
Phi Son, Vo, Nhat Binh, Le, Nguyen, Tung T., Trong Hai, Nguyen.  2021.  Physical layer security in cooperative cognitive radio networks with relay selection methods. 2021 International Conference on Advanced Technologies for Communications (ATC). :295—300.
This paper studies the physical layer security of four reactive relay selection methods (optimum relay selection, opportunist relay selection enhancement, suboptimal relay selection enhancement and partial relay selection enhancement) in a cooperative cognitive radio network including one pair of primary users, one eavesdropper, multiple relays and secondary users with perfect and imperfect channel state information (CSI) at receivers. In addition, we consider existing a direct link from a secondary source (S) to secondary destination receivers (D) and eavesdroppers (E). The secrecy outage probability, outage probability, intercept probability and reliability are calculated to verify the four relay selection methods with the fading channels by using Monte Carlo simulation. The results show that the loss of secrecy outage probability when remaining direct links from S to D and S to E. Additionally, the results also show that the trade-off between secrecy outage probability and the intercept probability and the optimum relay selection method outperforms other methods.
Xu, Xiaorong, Bao, Jianrong, Wang, Yujun, Hu, Andi, Zhao, Bin.  2021.  Cognitive Radio Primary Network Secure Communication Strategy Based on Energy Harvesting and Destination Assistance. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). :1—5.
Cognitive radio primary network secure communication strategy based on secondary user energy harvesting and primary user destination assistance is investigated to guarantee primary user secure communication in cognitive radio network. In the proposed strategy, the primary network selects the best secondary user to forward the traffic from a primary transmitter (PT) to a primary receiver (PR). The best secondary user implements beamforming technique to assist primary network for secure communication. The remaining secondary transmitters harvest energy and transmit information to secondary receiver over the licensed primary spectrum. In order to further enhance the security of primary network and increase the harvested energy for the remaining secondary users, a destination-assisted jamming signal transmission strategy is proposed. In this strategy, artificial noise jamming signal transmitted by PR not only confuses eavesdropper, but also be used to power the remaining secondary users. Simulation results demonstrate that, the proposed strategy allows secondary users to communicate in the licensed primary spectrum. It enhances primary network secure communication performance dramatically with the joint design of secondary user transmission power and beamforming vectors. Furthermore, physical layer security of primary and secondary network can also be guaranteed via the proposed cognitive radio primary network secure communication strategy.
Shengnan, Cao, Xiangdong, Jia, Yixuan, Guo, Yuhua, Zhao.  2021.  Physical Layer Security Communication of Cognitive UAV Mobile Relay Network. 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII). :267—271.
We consider that in order to improve the utilization rate of spectrum resources and the security rate of unmanned aerial vehicle (UAV) Communication system, a secure transmission scheme of UAV relay assisted cognitive radio network (CRN) is proposed. In the presence of primary users and eavesdroppers, the UAV acts as the decoding and forwarding mobile relay to assist the secure transmission from the source node to the legitimate destination node. This paper optimizes the flight trajectory and transmission power of the UAV relay to maximize the security rate. Since the design problem is nonconvex, the original problem is approximated to a convex constraint by constructing a surrogate function with nonconvex constraints, and an iterative algorithm based on continuous convex approximation is used to solve the problem. The simulation results show that the algorithm can effectively improve the average security rate of the secondary system and successfully optimize the UAV trajectory.
Cribbs, Michael, Romero, Ric, Ha, Tri.  2021.  Modulation-Based Physical Layer Security via Gray Code Hopping. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–6.
A physical layer security (PLS) technique called Gray Code Hopping (GCH) is presented offering simplistic implementation and no bit error rate (BER) performance degradation over the main channel. A synchronized transmitter and receiver "hop" to an alternative binary reflected Gray code (BRGC) mapping of bits to symbols between each consecutive modulation symbol. Monte Carlo simulations show improved BER performance over a similar technique from the literature. Simulations also confirm compatibility of GCH with either hard or soft decision decoding methods. Simplicity of GCH allows for ready implementation in adaptive 5th Generation New Radio (5G NR) modulation coding schemes.
Chen, Liquan, Guo, Xing, Lu, Tianyu, Gao, Yuan.  2021.  Formalization of the Secrecy Capacity in Non-degraded Wiretap Channel. 2021 7th International Conference on Computer and Communications (ICCC). :535–538.
Unlike the traditional key-exchange based cryptography, physical layer security is built on information theory and aims to achieve unconditional security by exploiting the physical characteristics of wireless channels. With the growth of the number of wireless devices, physical layer security has been gradually emphasized by researchers. Various physical layer security protocols have been proposed for different communication scenarios. Since these protocols are based on information-theoretic security and the formalization work for information theory were not complete when these protocols were proposed, the security of these protocols lacked formal proofs. In this paper, we propose a formal definition for the secrecy capacity in non-degraded wiretap channel model and a formal proof for the secrecy capacity in binary symmetric channel with the help of SSReflect/Coq theorem prover.
Li, Lintao, Xing, Yiran, Yao, Xiaoxia, Luo, Yuquan.  2021.  McEliece Coding Method based on LDPC Code with Application to Physical Layer Security. 2021 7th International Conference on Computer and Communications (ICCC). :2042–2045.

The ubiquity of wireless communication systems has resulted in extensive concern regarding their security issues. Combination of signaling and secrecy coding can provide greater improvement of confidentiality than tradition methods. In this work, we mainly focus on the secrecy coding design for physical layer security in wireless communications. When the main channel and wiretap channel are noisy, we propose a McEliece secure coding method based on LDPC which can guarantee both reliability between intended users and information security with respect to eavesdropper simultaneously. Simulation results show that Bob’s BER will be significantly decreased with the SNR increased, while Eve get a BER of 0.5 no matter how the SNR changes.

Taleb, Khaled, Benammar, Meryem.  2021.  On the information leakage of finite block-length wiretap polar codes. 2021 IEEE International Symposium on Information Theory (ISIT). :61—65.
Information leakage estimation for practical wiretap codes is a challenging task for which existing solutions are either too complex or suboptimal, and don't scale for large blocklengths. In this paper we present a new method, based on a modified version of the successive cancellation decoder in order to compute the information leakage for the wiretap polar code which improves upon existing methods in terms of complexity and accuracy. Results are presented for classical binary-input symmetric channels alike the Binary Erasure Channel (BEC), the Binary Symmetric Channel (BSC) and Binary Input Additive White Gaussian Noise channel (BI-AWGN).
2022-06-30
Okumura, Mamoru, Tomoki, Kaga, Okamoto, Eiji, Yamamoto, Tetsuya.  2021.  Chaos-Based Interleave Division Multiple Access Scheme with Physical Layer Security. 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). :1—2.

Interleave division multiple access (IDMA) is a multiple-access scheme and it is expected to improve frequency efficiency. Meanwhile, the damage caused by cyberattacks is increasing yearly. To solve this problem, we propose a method of applying radio-wave encryption to IDMA based on chaos modulation to realize physical layer security and the channel coding effect. We show that the proposed scheme ensures physical layer security and obtains channel coding gain by numerical simulations.