Li, Zhiqiang, Han, Shuai.
2022.
Research on Physical Layer Security of MIMO Two-way Relay System. ICC 2022 - IEEE International Conference on Communications. :3311–3316.
MIMO system makes full use of the space dimension, in the era of increasingly tense spectrum resources, which greatly improves the spectrum efficiency and is one of the future communication support technologies. At the same time, considering the high cost of direct communication between the two parties in a long distance, the relay communication mode has been paid more and more attention. In relay communication network, each node connected by relay has different security levels. In order to forward the information of all nodes, the relay node has the lowest security permission level. Therefore, it is meaningful to study the physical layer security problem in MIMO two-way relay system with relay as the eavesdropper. In view of the above situation, this paper proposes the physical layer security model of MIMO two-way relay cooperative communication network, designs a communication matching grouping algorithm with low complexity and a two-step carrier allocation optimization algorithm, which improves the total security capacity of the system. At the same time, theoretical analysis and simulation verify the effectiveness of the proposed algorithm.
ISSN: 1938-1883
Ayaz, Ferheen, Sheng, Zhengguo, Ho, Ivan Weng-Hei, Tiany, Daxin, Ding, Zhiguo.
2022.
Blockchain-enabled FD-NOMA based Vehicular Network with Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–6.
Vehicular networks are vulnerable to large scale attacks. Blockchain, implemented upon application layer, is recommended as one of the effective security and privacy solutions for vehicular networks. However, due to an increasing complexity of connected nodes, heterogeneous environment and rising threats, a robust security solution across multiple layers is required. Motivated by the Physical Layer Security (PLS) which utilizes physical layer characteristics such as channel fading to ensure reliable and confidential transmission, in this paper we analyze the impact of PLS on a blockchain-enabled vehicular network with two types of physical layer attacks, i.e., jamming and eavesdropping. Throughout the analysis, a Full Duplex Non-Orthogonal Multiple Access (FD-NOMA) based vehicle-to-everything (V2X) is considered to reduce interference caused by jamming and meet 5G communication requirements. Simulation results show enhanced goodput of a blockckchain enabled vehicular network integrated with PLS as compared to the same solution without PLS.
ISSN: 2577-2465
Kang, Min Suk.
2022.
Potential Security Concerns at the Physical Layer of 6G Cellular Systems. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :981–984.
In this short position paper, we discuss several potential security concerns that can be found at the physical layer of 6th-generation (6G) cellular networks. Discussion on 6G cellular networks is still at its early stage and thus several candidate radio technologies have been proposed but no single technology has yet been finally selected for 6G systems. Among several radio technologies, we focus on three promising ones for 6G physical-layer technologies: reconfigurable intelligent surface (RIS), Open-RAN (O-RAN), and full-duplex radios. We hope this position paper will spark more active discussion on the security concerns in these new radio technologies.
ISSN: 2162-1241
Vosoughitabar, Shaghayegh, Nooraiepour, Alireza, Bajwa, Waheed U., Mandayam, Narayan, Wu, Chung- Tse Michael.
2022.
Metamaterial-Enabled 2D Directional Modulation Array Transmitter for Physical Layer Security in Wireless Communication Links. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022. :595–598.
A new type of time modulated metamaterial (MTM) antenna array transmitter capable of realizing 2D directional modulation (DM) for physical layer (PHY) security is presented in this work. The proposed 2D DM MTM antenna array is formed by a time modulated corporate feed network loaded with composite right/left-handed (CRLH) leaky wave antennas (LWAs). By properly designing the on-off states of the switch for each antenna feeding branch as well as harnessing the frequency scanning characteristics of CRLH L WAs, 2D DM can be realized to form a PHY secured transmission link in the 2D space. Experimental results demonstrate the bit-error-rate (BER) is low only at a specific 2D angle for the orthogonal frequency-division multiplexing (OFDM) wireless data links.
ISSN: 2576-7216
Chen, Songlin, Wang, Sijing, Xu, Xingchen, Jiao, Long, Wen, Hong.
2022.
Physical Layer Security Authentication Based Wireless Industrial Communication System for Spoofing Detection. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Security is of vital importance in wireless industrial communication systems. When spoofing attacking has occurred, leading to economic losses or even safety accidents. So as to address the concern, existing approaches mainly rely on traditional cryptographic algorithms. However, these methods cannot meet the needs of short delay and lightweight. In this paper, we propose a CSI-based PHY-layer security authentication scheme to detect spoofing detection. The main idea takes advantage of the uncorrelated nature of wireless channels to the identification of spoofing nodes in the physical layer. We demonstrate a MIMO-OFDM based spoofing detection prototype in industrial environments. Firstly, utilizing Universal Software Radio Peripheral (USRPs) to establish MIMO-OFDM communication systems is presented. Secondly, our proposed security scheme of CSI-based PHY-layer authentication is demonstrated. Finally, the effectiveness of the proposed approach has been verified via attack experiments.
Sekhar, P. Chandra, Murthy, T. S. N..
2022.
Physical Layer Security using SMO. 2022 International Conference on Computing, Communication and Power Technology (IC3P). :98–102.
Physical Layer Security (PLS) is used to accomplish perfect secure communication between intended network nodes, while the eavesdropper gets zero information. In this paper, a smart antenna technology i.e., Massive multiple-input-multiple-output (mMIMO) and Non-Orthogonal Multiple Access (NOMA) technology is being used to enhance the secrecy performance of a 5G communication network. Small scale Rayleigh fading channels, as well as large scale pathway loss, have to be taken into consideration. An eavesdropper with multiple antennas, an amplify-and-forward (AF) relay with multi antenna has been proposed. Spider Monkey Algorithm (SMO) is used in adding Artificial Noise (AN) for refining secrecy rate. The findings revealed that the suggested technique improves the security and the quality of Wireless communication.
Venkatesh, Suresh, Saeidi, Hooman, Sengupta, Kaushik, Lu, Xuyang.
2022.
Millimeter-Wave Physical Layer Security through Space-Time Modulated Transmitter Arrays. 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON). :1–4.
Wireless security and privacy is gaining a significant interest due to the burgeoning growth of communication devices across the electromagnetic spectrum. In this article, we introduce the concept of the space-time modulated millimeter-wave wireless links enabling physical layer security in highspeed communication links. Such an approach does not require cryptographic key exchanges and enables security in a seamless fashion with no overhead on latency. We show both the design and implementation of such a secure system using custom integrated chips at 71-76 GHz with off-chip packaged antenna array. We also demonstrate the security metric of such a system and analyze the efficacy through distributed eavesdropper attack.
Huang, Yunge.
2022.
The Establishment of Internet-Based Network Physical Layer Security Identification System. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :190–193.
With the continuous development of the Internet, artificial intelligence, 5G and other technologies, various issues have started to receive attention, among which the network security issue is now one of the key research directions for relevant research scholars at home and abroad. This paper researches on the basis of traditional Internet technology to establish a security identification system on top of the network physical layer of the Internet, which can effectively identify some security problems on top of the network infrastructure equipment and solve the identified security problems on the physical layer. This experiment is to develop a security identification system, research and development in the network physical level of the Internet, compared with the traditional development of the relevant security identification system in the network layer, the development in the physical layer, can be based on the physical origin of the protection, from the root to solve part of the network security problems, can effectively carry out the identification and solution of network security problems. The experimental results show that the security identification system can identify some basic network security problems very effectively, and the system is developed based on the physical layer of the Internet network, and the protection is carried out from the physical device, and the retransmission symbol error rates of CQ-PNC algorithm and ML algorithm in the experiment are 110 and 102, respectively. The latter has a lower error rate and better protection.