Visible to the public Biblio

Found 913 results

Filters: Keyword is computer network security  [Clear All Filters]
2020-05-11
Xue, Kaiping, Zhang, Xiang, Xia, Qiudong, Wei, David S.L., Yue, Hao, Wu, Feng.  2018.  SEAF: A Secure, Efficient and Accountable Access Control Framework for Information Centric Networking. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2213–2221.
Information Centric Networking (ICN) has been regarded as an ideal architecture for the next-generation network to handle users' increasing demand for content delivery with in-network cache. While making better use of network resources and providing better delivery service, an effective access control mechanism is needed due to wide dissemination of contents. However, in the existing solutions, making cache-enabled routers or content providers authenticate users' requests causes high computation overhead and unnecessary delay. Also, straightforward utilization of advanced encryption algorithms increases the opportunities for DoS attacks. Besides, privacy protection and service accountability are rarely taken into account in this scenario. In this paper, we propose a secure, efficient, and accountable access control framework, called SEAF, for ICN, in which authentication is performed at the network edge to block unauthorized requests at the very beginning. We adopt group signature to achieve anonymous authentication, and use hash chain technique to greatly reduce the overhead when users make continuous requests for the same file. Furthermore, the content providers can affirm the service amount received from the network and extract feedback information from the signatures and hash chains. By formal security analysis and the comparison with related works, we show that SEAF achieves the expected security goals and possesses more useful features. The experimental results also demonstrate that our design is efficient for routers and content providers, and introduces only slight delay for users' content retrieval.
Ma, Yuxiang, Wu, Yulei, Ge, Jingguo, Li, Jun.  2018.  A Flow-Level Architecture for Balancing Accountability and Privacy. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :984–989.
With the rapid development of the Internet, flow-based approach has attracted more and more attention. To this end, this paper presents a new and efficient architecture to balance accountability and privacy based on network flows. A self-certifying identifier is proposed to efficiently identify a flow. In addition, a delegate-registry cooperation scheme and a multi-delegate mechanism are developed to ensure users' privacy. The effectiveness and overhead of the proposed architecture are evaluated by virtue of the real trace collected from an Internet service provider. The experimental results show that our architecture can achieve a better network performance in terms of lower resource consumption, lower response time, and higher stability.
Chae, Younghun, Katenka, Natallia, DiPippo, Lisa.  2019.  An Adaptive Threshold Method for Anomaly-based Intrusion Detection Systems. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–4.
Anomaly-based Detection Systems (ADSs) attempt to learn the features of behaviors and events of a system and/or users over a period to build a profile of normal behaviors. There has been a growing interest in ADSs and typically conceived as more powerful systems One of the important factors for ADSs is an ability to distinguish between normal and abnormal behaviors in a given period. However, it is getting complicated due to the dynamic network environment that changes every minute. It is dangerous to distinguish between normal and abnormal behaviors with a fixed threshold in a dynamic environment because it cannot guarantee the threshold is always an indication of normal behaviors. In this paper, we propose an adaptive threshold for a dynamic environment with a trust management scheme for efficiently managing the profiles of normal and abnormal behaviors. Based on the assumption of the statistical analysis-based ADS that normal data instances occur in high probability regions while malicious data instances occur in low probability regions of a stochastic model, we set two adaptive thresholds for normal and abnormal behaviors. The behaviors between the two thresholds are classified as suspicious behaviors, and they are efficiently evaluated with a trust management scheme.
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.
Kanimozhi, V., Jacob, T. Prem.  2019.  Artificial Intelligence based Network Intrusion Detection with Hyper-Parameter Optimization Tuning on the Realistic Cyber Dataset CSE-CIC-IDS2018 using Cloud Computing. 2019 International Conference on Communication and Signal Processing (ICCSP). :0033–0036.

One of the latest emerging technologies is artificial intelligence, which makes the machine mimic human behavior. The most important component used to detect cyber attacks or malicious activities is the Intrusion Detection System (IDS). Artificial intelligence plays a vital role in detecting intrusions and widely considered as the better way in adapting and building IDS. In trendy days, artificial intelligence algorithms are rising as a brand new computing technique which will be applied to actual time issues. In modern days, neural network algorithms are emerging as a new artificial intelligence technique that can be applied to real-time problems. The proposed system is to detect a classification of botnet attack which poses a serious threat to financial sectors and banking services. The proposed system is created by applying artificial intelligence on a realistic cyber defense dataset (CSE-CIC-IDS2018), the very latest Intrusion Detection Dataset created in 2018 by Canadian Institute for Cybersecurity (CIC) on AWS (Amazon Web Services). The proposed system of Artificial Neural Networks provides an outstanding performance of Accuracy score is 99.97% and an average area under ROC (Receiver Operator Characteristic) curve is 0.999 and an average False Positive rate is a mere value of 0.001. The proposed system using artificial intelligence of botnet attack detection is powerful, more accurate and precise. The novel proposed system can be implemented in n machines to conventional network traffic analysis, cyber-physical system traffic data and also to the real-time network traffic analysis.

Peng, Wang, Kong, Xiangwei, Peng, Guojin, Li, Xiaoya, Wang, Zhongjie.  2019.  Network Intrusion Detection Based on Deep Learning. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :431–435.
With the continuous development of computer network technology, security problems in the network are emerging one after another, and it is becoming more and more difficult to ignore. For the current network administrators, how to successfully prevent malicious network hackers from invading, so that network systems and computers are at Safe and normal operation is an urgent task. This paper proposes a network intrusion detection method based on deep learning. This method uses deep confidence neural network to extract features of network monitoring data, and uses BP neural network as top level classifier to classify intrusion types. The method was validated using the KDD CUP'99 dataset from the Lincoln Laboratory of the Massachusetts Institute of Technology. The results show that the proposed method has a significant improvement over the traditional machine learning accuracy.
OUIAZZANE, Said, ADDOU, Malika, BARRAMOU, Fatimazahra.  2019.  A Multi-Agent Model for Network Intrusion Detection. 2019 1st International Conference on Smart Systems and Data Science (ICSSD). :1–5.
The objective of this paper is to propose a distributed intrusion detection model based on a multi agent system. Mutli Agent Systems (MAS) are very suitable for intrusion detection systems as they meet the characteristics required by the networks and Big Data issues. The MAS agents cooperate and communicate with each other to ensure the effective detection of network intrusions without the intervention of an expert as used to be in the classical intrusion detection systems relying on signature matching to detect known attacks. The proposed model helped to detect known and unknown attacks within big computer infrastructure by responding to the network requirements in terms of distribution, autonomy, responsiveness and communication. The proposed model is capable of achieving a good and a real time intrusion detection using multi-agents paradigm and Hadoop Distributed File System (HDFS).
Nagamani, Ch., Chittineni, Suneetha.  2018.  Network Intrusion Detection Mechanisms Using Outlier Detection. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1468–1473.
The recognition of intrusions has increased impressive enthusiasm for information mining with the acknowledgment that anomalies can be the key disclosure to be produced using extensive network databases. Intrusions emerge because of different reasons, for example, mechanical deficiencies, changes in framework conduct, fake conduct, human blunder and instrument mistake. Surely, for some applications the revelation of Intrusions prompts more intriguing and helpful outcomes than the disclosure of inliers. Discovery of anomalies can prompt recognizable proof of framework blames with the goal that executives can take preventive measures previously they heighten. A network database framework comprises of a sorted out posting of pages alongside programming to control the network information. This database framework has been intended to empower network operations, oversee accumulations of information, show scientific outcomes and to get to these information utilizing networks. It likewise empowers network clients to gather limitless measure of information on unbounded territories of utilization, break down it and return it into helpful data. Network databases are ordinarily used to help information control utilizing dynamic capacities on sites or for putting away area subordinate data. This database holds a surrogate for each network route. The formation of these surrogates is called ordering and each network database does this errand in an unexpected way. In this paper, a structure for compelling access control and Intrusion Detection using outliers has been proposed and used to give viable Security to network databases. The design of this framework comprises of two noteworthy subsystems to be specific, Access Control Subsystem and Intrusion Detection Subsystem. In this paper preprocessing module is considered which clarifies the preparing of preprocessing the accessible information. And rain forest method is discussed which is used for intrusion detection.
Nikolov, Dimitar, Kordev, Iliyan, Stefanova, Stela.  2018.  Concept for network intrusion detection system based on recurrent neural network classifier. 2018 IEEE XXVII International Scientific Conference Electronics - ET. :1–4.
This paper presents the effects of problem based learning project on a high-school student in Technology school “Electronic systems” associated with Technical University Sofia. The problem is creating an intrusion detection system for Apache HTTP Server with duration 6 months. The intrusion detection system is based on a recurrent neural network classifier namely long-short term memory units.
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
Mirza, Ali H., Cosan, Selin.  2018.  Computer network intrusion detection using sequential LSTM Neural Networks autoencoders. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1–4.
In this paper, we introduce a sequential autoencoder framework using long short term memory (LSTM) neural network for computer network intrusion detection. We exploit the dimensionality reduction and feature extraction property of the autoencoder framework to efficiently carry out the reconstruction process. Furthermore, we use the LSTM networks to handle the sequential nature of the computer network data. We assign a threshold value based on cross-validation in order to classify whether the incoming network data sequence is anomalous or not. Moreover, the proposed framework can work on both fixed and variable length data sequence and works efficiently for unforeseen and unpredictable network attacks. We then also use the unsupervised version of the LSTM, GRU, Bi-LSTM and Neural Networks. Through a comprehensive set of experiments, we demonstrate that our proposed sequential intrusion detection framework performs well and is dynamic, robust and scalable.
Althubiti, Sara A., Jones, Eric Marcell, Roy, Kaushik.  2018.  LSTM for Anomaly-Based Network Intrusion Detection. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). :1–3.
Due to the massive amount of the network traffic, attackers have a great chance to cause a huge damage to the network system or its users. Intrusion detection plays an important role in ensuring security for the system by detecting the attacks and the malicious activities. In this paper, we utilize CIDDS dataset and apply a deep learning approach, Long-Short-Term Memory (LSTM), to implement intrusion detection system. This research achieves a reasonable accuracy of 0.85.
Abhilash, Goyal, Divyansh, Gupta.  2018.  Intrusion Detection and Prevention in Software Defined Networking. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–4.
Software defined networking is a concept proposed to replace traditional networks by separating control plane and data plane. It makes the network more programmable and manageable. As there is a single point of control of the network, it is more vulnerable to intrusion. The idea is to train the network controller by machine learning algorithms to let it make the intelligent decisions automatically. In this paper, we have discussed our approach to make software defined networking more secure from various malicious attacks by making it capable of detecting and preventing such attacks.
Anand Sukumar, J V, Pranav, I, Neetish, MM, Narayanan, Jayasree.  2018.  Network Intrusion Detection Using Improved Genetic k-means Algorithm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2441–2446.
Internet is a widely used platform nowadays by people across the globe. This has led to the advancement in science and technology. Many surveys show that network intrusion has registered a consistent increase and lead to personal privacy theft and has become a major platform for attack in the recent years. Network intrusion is any unauthorized activity on a computer network. Hence there is a need to develop an effective intrusion detection system. In this paper we acquaint an intrusion detection system that uses improved genetic k-means algorithm(IGKM) to detect the type of intrusion. This paper also shows a comparison between an intrusion detection system that uses the k-means++ algorithm and an intrusion detection system that uses IGKM algorithm while using smaller subset of kdd-99 dataset with thousand instances and the KDD-99 dataset. The experiment shows that the intrusion detection that uses IGKM algorithm is more accurate when compared to k-means++ algorithm.
Yu, Dunyi.  2018.  Research on Anomaly Intrusion Detection Technology in Wireless Network. 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :540–543.
In order to improve the security of wireless network, an anomaly intrusion detection algorithm based on adaptive time-frequency feature decomposition is proposed. This paper analyzes the types and detection principles of wireless network intrusion detection, it adopts the information statistical analysis method to detect the network intrusion, constructs the traffic statistical analysis model of the network abnormal intrusion, and establishes the network intrusion signal model by combining the signal fitting method. The correlation matching filter is used to filter the network intrusion signal to improve the output signal-to-noise ratio (SNR), the time-frequency analysis method is used to extract the characteristic quantity of the network abnormal intrusion, and the adaptive correlation spectrum analysis method is used to realize the intrusion detection. The simulation results show that this method has high accuracy and strong anti-interference ability, and it can effectively guarantee the network security.
2020-05-08
Zhi-wen, Wang, Yang, Cheng.  2018.  Bandwidth Allocation Strategy of Networked Control System under Denial-of-Service Attack. 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC). :49—55.

In this paper, security of networked control system (NCS) under denial of service (DoS) attack is considered. Different from the existing literatures from the perspective of control systems, this paper considers a novel method of dynamic allocation of network bandwidth for NCS under DoS attack. Firstly, time-constrained DoS attack and its impact on the communication channel of NCS are introduced. Secondly, details for the proposed dynamic bandwidth allocation structure are presented along with an implementation, which is a bandwidth allocation strategy based on error between current state and equilibrium state and available bandwidth. Finally, a numerical example is given to demonstrate the effectiveness of the proposed bandwidth allocation approach.

Zhang, Shaobo, Shen, Yongjun, Zhang, Guidong.  2018.  Network Security Situation Prediction Model Based on Multi-Swarm Chaotic Particle Optimization and Optimized Grey Neural Network. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). :426—429.
Network situation value is an important index to measure network security. Establishing an effective network situation prediction model can prevent the occurrence of network security incidents, and plays an important role in network security protection. Through the understanding and analysis of the network security situation, we can see that there are many factors affecting the network security situation, and the relationship between these factors is complex., it is difficult to establish more accurate mathematical expressions to describe the network situation. Therefore, this paper uses the grey neural network as the prediction model, but because the convergence speed of the grey neural network is very fast, the network is easy to fall into local optimum, and the parameters can not be further modified, so the Multi-Swarm Chaotic Particle Optimization (MSCPO)is used to optimize the key parameters of the grey neural network. By establishing the nonlinear mapping relationship between the influencing factors and the network security situation, the network situation can be predicted and protected.
CUI, A-jun, Li, Chen, WANG, Xiao-ming.  2019.  Real-Time Early Warning of Network Security Threats Based on Improved Ant Colony Algorithm. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). :309—316.
In order to better ensure the operation safety of the network, the real-time early warning of network security threats is studied based on the improved ant colony algorithm. Firstly, the network security threat perception algorithm is optimized based on the principle of neural network, and the network security threat detection process is standardized according to the optimized algorithm. Finally, the real-time early warning of network security threats is realized. Finally, the experiment proves that the network security threat real-time warning based on the improved ant colony algorithm has better security and stability than the traditional warning methods, and fully meets the research requirements.
Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.
Wu, Peilun, Guo, Hui.  2019.  LuNet: A Deep Neural Network for Network Intrusion Detection. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :617—624.

Network attack is a significant security issue for modern society. From small mobile devices to large cloud platforms, almost all computing products, used in our daily life, are networked and potentially under the threat of network intrusion. With the fast-growing network users, network intrusions become more and more frequent, volatile and advanced. Being able to capture intrusions in time for such a large scale network is critical and very challenging. To this end, the machine learning (or AI) based network intrusion detection (NID), due to its intelligent capability, has drawn increasing attention in recent years. Compared to the traditional signature-based approaches, the AI-based solutions are more capable of detecting variants of advanced network attacks. However, the high detection rate achieved by the existing designs is usually accompanied by a high rate of false alarms, which may significantly discount the overall effectiveness of the intrusion detection system. In this paper, we consider the existence of spatial and temporal features in the network traffic data and propose a hierarchical CNN+RNN neural network, LuNet. In LuNet, the convolutional neural network (CNN) and the recurrent neural network (RNN) learn input traffic data in sync with a gradually increasing granularity such that both spatial and temporal features of the data can be effectively extracted. Our experiments on two network traffic datasets show that compared to the state-of-the-art network intrusion detection techniques, LuNet not only offers a high level of detection capability but also has a much low rate of false positive-alarm.

Saraswat, Pavi, Garg, Kanika, Tripathi, Rajan, Agarwal, Ayush.  2019.  Encryption Algorithm Based on Neural Network. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1—5.
Security is one of the most important needs in network communication. Cryptography is a science which involves two techniques encryption and decryption and it basically enables to send sensitive and confidential data over the unsecure network. The basic idea of cryptography is concealing of the data from unauthenticated users as they can misuse the data. In this paper we use auto associative neural network concept of soft computing in combination with encryption technique to send data securely on communication network.
Wang, Dongqi, Shuai, Xuanyue, Hu, Xueqiong, Zhu, Li.  2019.  Research on Computer Network Security Evaluation Method Based on Levenberg-Marquardt Algorithms. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :399—402.
As we all know, computer network security evaluation is an important link in the field of network security. Traditional computer network security evaluation methods use BP neural network combined with network security standards to train and simulate. However, because BP neural network is easy to fall into local minimum point in the training process, the evalu-ation results are often inaccurate. In this paper, the LM (Levenberg-Marquard) algorithm is used to optimize the BP neural network. The LM-BP algorithm is constructed and applied to the computer network security evaluation. The results show that compared with the traditional evaluation algorithm, the optimized neural network has the advantages of fast running speed and accurate evaluation results.
Guan, Chengli, Yang, Yue.  2019.  Research of Computer Network Security Evaluation Based on Backpropagation Neural Network. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :181—184.
In recent years, due to the invasion of virus and loopholes, computer networks in colleges and universities have caused great adverse effects on schools, teachers and students. In order to improve the accuracy of computer network security evaluation, Back Propagation (BP) neural network was trained and built. The evaluation index and target expectations have been determined based on the expert system, with 15 secondary evaluation index values taken as input layer parameters, and the computer network security evaluation level values taken as output layer parameter. All data were divided into learning sample sets and forecasting sample sets. The results showed that the designed BP neural network exhibited a fast convergence speed and the system error was 0.000999654. Furthermore, the predictive values of the network were in good agreement with the experimental results, and the correlation coefficient was 0.98723. These results indicated that the network had an excellent training accuracy and generalization ability, which effectively reflected the performance of the system for the computer network security evaluation.
2020-05-04
Lin, Yiyong, Lin, Lei.  2019.  Design and Realization of a Computer Security Control Circuit for Local Area Network. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :9–12.
A local area network (LAN) computer security control circuit is designed for the practical problem of LAN computer users "one machine crosses two networks" on this paper, which provides a protection barrier for the information security of LAN computers on the hardware. This paper briefly analyzes the risks and challenges faced by LAN security. The overall design idea, circuit design and working principle of LAN computer security control circuit are described in detail. The characteristics of the system are summarized. Finally, the design circuit is verified by practical application in the unit. The application results show that the circuit is stable in operation, simple in operation, safe and reliable, and convenient in installation and maintain, etc., which has achieved the design effect and played a good role in ensuring the security of the network information of the local area network.
Zhang, Meng, Shen, Chao, Han, Sicong.  2019.  A Compensation Control Scheme against DoS Attack for Nonlinear Cyber-Physical Systems. 2019 Chinese Control Conference (CCC). :144–149.

This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.