Visible to the public Biblio

Found 486 results

Filters: Keyword is Network security  [Clear All Filters]
2023-07-10
Zhang, Xiao, Chen, Xiaoming, He, Yuxiong, Wang, Youhuai, Cai, Yong, Li, Bo.  2022.  Neural Network-Based DDoS Detection on Edge Computing Architecture. 2022 4th International Conference on Applied Machine Learning (ICAML). :1—4.
The safety of the power system is inherently vital, due to the high risk of the electronic power system. In the wave of digitization in recent years, many power systems have been digitized to a certain extent. Under this circumstance, network security is particularly important, in order to ensure the normal operation of the power system. However, with the development of the Internet, network security issues are becoming more and more serious. Among all kinds of network attacks, the Distributed Denial of Service (DDoS) is a major threat. Once, attackers used huge volumes of traffic in short time to bring down the victim server. Now some attackers just use low volumes of traffic but for a long time to create trouble for attack detection. There are many methods for DDoS detection, but no one can fully detect it because of the huge volumes of traffic. In order to better detect DDoS and make sure the safety of electronic power system, we propose a novel detection method based on neural network. The proposed model and its service are deployed to the edge cloud, which can improve the real-time performance for detection. The experiment results show that our model can detect attacks well and has good real-time performance.
Kim, Hyun-Jin, Lee, Jonghoon, Park, Cheolhee, Park, Jong-Geun.  2022.  Network Anomaly Detection based on Domain Adaptation for 5G Network Security. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :976—980.

Currently, research on 5G communication is focusing increasingly on communication techniques. The previous studies have primarily focused on the prevention of communications disruption. To date, there has not been sufficient research on network anomaly detection as a countermeasure against on security aspect. 5g network data will be more complex and dynamic, intelligent network anomaly detection is necessary solution for protecting the network infrastructure. However, since the AI-based network anomaly detection is dependent on data, it is difficult to collect the actual labeled data in the industrial field. Also, the performance degradation in the application process to real field may occur because of the domain shift. Therefore, in this paper, we research the intelligent network anomaly detection technique based on domain adaptation (DA) in 5G edge network in order to solve the problem caused by data-driven AI. It allows us to train the models in data-rich domains and apply detection techniques in insufficient amount of data. For Our method will contribute to AI-based network anomaly detection for improving the security for 5G edge network.

2023-06-23
Xie, Guorui, Li, Qing, Cui, Chupeng, Zhu, Peican, Zhao, Dan, Shi, Wanxin, Qi, Zhuyun, Jiang, Yong, Xiao, Xi.  2022.  Soter: Deep Learning Enhanced In-Network Attack Detection Based on Programmable Switches. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :225–236.
Though several deep learning (DL) detectors have been proposed for the network attack detection and achieved high accuracy, they are computationally expensive and struggle to satisfy the real-time detection for high-speed networks. Recently, programmable switches exhibit a remarkable throughput efficiency on production networks, indicating a possible deployment of the timely detector. Therefore, we present Soter, a DL enhanced in-network framework for the accurate real-time detection. Soter consists of two phases. One is filtering packets by a rule-based decision tree running on the Tofino ASIC. The other is executing a well-designed lightweight neural network for the thorough inspection of the suspicious packets on the CPU. Experiments on the commodity switch demonstrate that Soter behaves stably in ten network scenarios of different traffic rates and fulfills per-flow detection in 0.03s. Moreover, Soter naturally adapts to the distributed deployment among multiple switches, guaranteeing a higher total throughput for large data centers and cloud networks.
ISSN: 2575-8462
2023-06-22
Chen, Jing, Yang, Lei, Qiu, Ziqiao.  2022.  Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.  2022.  Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.

A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.

Ashodia, Namita, Makadiya, Kishan.  2022.  Detection and Mitigation of DDoS attack in Software Defined Networking: A Survey. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :1175–1180.

Software Defined Networking (SDN) is an emerging technology, which provides the flexibility in communicating among network. Software Defined Network features separation of the data forwarding plane from the control plane which includes controller, resulting centralized network. Due to centralized control, the network becomes more dynamic, and resources are managed efficiently and cost-effectively. Network Virtualization is transformation of network from hardware-based to software-based. Network Function Virtualization will permit implementation, adaptable provisioning, and even management of functions virtually. The use of virtualization of SDN networks permits network to strengthen the features of SDN and virtualization of NFV and has for that reason has attracted notable research awareness over the last few years. SDN platform introduces network security challenges. The network becomes vulnerable when a large number of requests is encapsulated inside packet\_in messages and passed to controller from switch for instruction, if it is not recognized by existing flow entry rules. which will limit the resources and become a bottleneck for the entire network leading to DDoS attack. It is necessary to have quick provisional methods to prevent the switches from breaking down. To resolve this problem, the researcher develops a mechanism that detects and mitigates flood attacks. This paper provides a comprehensive survey which includes research relating frameworks which are utilized for detecting attack and later mitigation of flood DDoS attack in Software Defined Network (SDN) with the help of NFV.

Satyanarayana, D, Alasmi, Aisha Said.  2022.  Detection and Mitigation of DDOS based Attacks using Machine Learning Algorithm. 2022 International Conference on Cyber Resilience (ICCR). :1–5.

In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.

Wang, Danni, Li, Sizhao.  2022.  Automated DDoS Attack Mitigation for Software Defined Network. 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :100–104.
Network security is a prominent topic that is gaining international attention. Distributed Denial of Service (DDoS) attack is often regarded as one of the most serious threats to network security. Software Defined Network (SDN) decouples the control plane from the data plane, which can meet various network requirements. But SDN can also become the object of DDoS attacks. This paper proposes an automated DDoS attack mitigation method that is based on the programmability of the Ryu controller and the features of the OpenFlow switch flow tables. The Mininet platform is used to simulate the whole process, from SDN traffic generation to using a K-Nearest Neighbor model for traffic classification, as well as identifying and mitigating DDoS attack. The packet counts of the victim's malicious traffic input port are significantly lower after the mitigation method is implemented than before the mitigation operation. The purpose of mitigating DDoS attack is successfully achieved.
ISSN: 2163-5056
2023-06-09
Ali AL-Jumaili, Ahmed Hadi, Muniyandi, Ravie Chandren, Hasan, Mohammad Kamrul, Singh, Mandeep Jit, Siaw Paw, Johnny Koh.  2022.  Analytical Survey on the Security Framework of Cyber-Physical Systems for Smart Power System Networks. 2022 International Conference on Cyber Resilience (ICCR). :1—8.
Cyber-Physical Power System (CPPS) is one of the most critical infrastructure systems due to deep integration between power grids and communication networks. In the power system, cascading failure is spreading more readily in CPPS, even leading to blackouts as well as there are new difficulties with the power system security simulation and faults brought by physical harm or network intrusions. The current study summarized the cross- integration of several fields such as computer and cyberspace security in terms of the robustness of Cyber-Physical Systems, viewed as Interconnected and secure network systems. Therefore, the security events that significantly influenced the power system were evaluated in this study, besides the challenges and future directions of power system security simulation technologies were investigated for posing both challenges and opportunities for simulation techniques of power system security like building a new power system to accelerate the transformation of the existing energy system to a clean, low-carbon, safe, and efficient energy system which is used to assure power system stability through fusion systems that combine the cyber-physical to integrate the battery power station, power generation and renewable energy resources through the internet with the cyber system that contains Smart energy system control and attacks.
2023-06-02
Singh, Hoshiyar, Balamurgan, K M.  2022.  Implementation of Privacy and Security in the Wireless Networks. 2022 International Conference on Futuristic Technologies (INCOFT). :1—6.

The amount of information that is shared regularly has increased as a direct result of the rapid development of network administrators, Web of Things-related devices, and online users. Cybercriminals constantly work to gain access to the data that is stored and transferred online in order to accomplish their objectives, whether those objectives are to sell the data on the dark web or to commit another type of crime. After conducting a thorough writing analysis of the causes and problems that arise with wireless networks’ security and privacy, it was discovered that there are a number of factors that can make the networks unpredictable, particularly those that revolve around cybercriminals’ evolving skills and the lack of significant bodies’ efforts to combat them. It was observed. Wireless networks have a built-in security flaw that renders them more defenceless against attack than their wired counterparts. Additionally, problems arise in networks with hub mobility and dynamic network geography. Additionally, inconsistent availability poses unanticipated problems, whether it is accomplished through mobility or by sporadic hub slumber. In addition, it is difficult, if not impossible, to implement recently developed security measures due to the limited resources of individual hubs. Large-scale problems that arise in relation to wireless networks and flexible processing are examined by the Wireless Correspondence Network Security and Privacy research project. A few aspects of security that are taken into consideration include confirmation, access control and approval, non-disavowal, privacy and secrecy, respectability, and inspection. Any good or service should be able to protect a client’s personal information. an approach that emphasises quality, implements strategy, and uses a poll as a research tool for IT and public sector employees. This strategy reflects a higher level of precision in IT faculties.

Liang, Dingyang, Sun, Jianing, Zhang, Yizhi, Yan, Jun.  2022.  Lightweight Neural Network-based Web Fingerprinting Model. 2022 International Conference on Networking and Network Applications (NaNA). :29—34.

Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.

2023-05-30
Aljohani, Nader, Agnew, Dennis, Nagaraj, Keerthiraj, Boamah, Sharon A., Mathieu, Reynold, Bretas, Arturo S., McNair, Janise, Zare, Alina.  2022.  Cross-Layered Cyber-Physical Power System State Estimation towards a Secure Grid Operation. 2022 IEEE Power & Energy Society General Meeting (PESGM). :1—5.
In the Smart Grid paradigm, this critical infrastructure operation is increasingly exposed to cyber-threats due to the increased dependency on communication networks. An adversary can launch an attack on a power grid operation through False Data Injection into system measurements and/or through attacks on the communication network, such as flooding the communication channels with unnecessary data or intercepting messages. A cross-layered strategy that combines power grid data, communication grid monitoring and Machine Learning-based processing is a promising solution for detecting cyber-threats. In this paper, an implementation of an integrated solution of a cross-layer framework is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection of anomalies in the operation of power grid. IEEE 118-bus system is built in Simulink to provide a power grid testing environment and communication network data is emulated using SimComponents. The performance of the framework is investigated under various FDI and communication attacks.
2023-05-19
Wang, Jingyi, Huang, Cheng, Ma, Yiming, Wang, Huiyuan, Peng, Chao, Yu, HouHui.  2022.  BA-CPABE : An auditable Ciphertext-Policy Attribute Based Encryption Based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :193—197.
At present, the ciphertext-policy attribute based encryption (CP-ABE) has been widely used in different fields of data sharing such as cross-border paperless trade, digital government and etc. However, there still exist some challenges including single point of failure, key abuse and key unaccountable issues in CP-ABE. To address these problems. We propose an accountable CP-ABE mechanism based on block chain system. First, we establish two authorization agencies MskCA and AttrVN(Attribute verify Network),where the MskCA can realize master key escrow, and the AttrVN manages and validates users' attributes. In this way, our system can avoid the single point of failure and improve the privacy of user attributes and security of keys. Moreover, in order to realize auditability of CP-ABE key parameter transfer, we introduce the did and record parameter transfer process on the block chain. Finally, we theoretically prove the security of our CP-ABE. Through comprehensive comparison, the superiority of CP-ABE is verified. At the same time, our proposed schemes have some properties such as fast decryption and so on.
2023-05-12
Bo, Lili, Meng, Xing, Sun, Xiaobing, Xia, Jingli, Wu, Xiaoxue.  2022.  A Comprehensive Analysis of NVD Concurrency Vulnerabilities. 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). :9–18.

Concurrency vulnerabilities caused by synchronization problems will occur in the execution of multi-threaded programs, and the emergence of concurrency vulnerabilities often cause great threats to the system. Once the concurrency vulnerabilities are exploited, the system will suffer various attacks, seriously affecting its availability, confidentiality and security. In this paper, we extract 839 concurrency vulnerabilities from Common Vulnerabilities and Exposures (CVE), and conduct a comprehensive analysis of the trend, classifications, causes, severity, and impact. Finally, we obtained some findings: 1) From 1999 to 2021, the number of concurrency vulnerabilities disclosures show an overall upward trend. 2) In the distribution of concurrency vulnerability, race condition accounts for the largest proportion. 3) The overall severity of concurrency vulnerabilities is medium risk. 4) The number of concurrency vulnerabilities that can be exploited for local access and network access is almost equal, and nearly half of the concurrency vulnerabilities (377/839) can be accessed remotely. 5) The access complexity of 571 concurrency vulnerabilities is medium, and the number of concurrency vulnerabilities with high or low access complexity is almost equal. The results obtained through the empirical study can provide more support and guidance for research in the field of concurrency vulnerabilities.

ISSN: 2693-9177

Yu, Juan.  2022.  Research on Location Information and Privacy Protection Based on Big Data. 2022 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC). :226–229.

In the context of big data era, in order to prevent malicious access and information leakage during data services, researchers put forward a location big data encryption method based on privacy protection in practical exploration. According to the problems arising from the development of information network in recent years, users often encounter the situation of randomly obtaining location information in the network environment, which not only threatens their privacy security, but also affects the effective transmission of information. Therefore, this study proposed the privacy protection as the core position of big data encryption method, must first clear position with large data representation and positioning information, distinguish between processing position information and the unknown information, the fuzzy encryption theory, dynamic location data regrouping, eventually build privacy protection as the core of the encryption algorithm. The empirical results show that this method can not only effectively block the intrusion of attack data, but also effectively control the error of position data encryption.

Buscemi, Alessio, Turcanu, Ion, Castignani, German, Engel, Thomas.  2022.  On Frame Fingerprinting and Controller Area Networks Security in Connected Vehicles. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :821–826.
Modern connected vehicles are equipped with a large number of sensors, which enable a wide range of services that can improve overall traffic safety and efficiency. However, remote access to connected vehicles also introduces new security issues affecting both inter and intra-vehicle communications. In fact, existing intra-vehicle communication systems, such as Controller Area Network (CAN), lack security features, such as encryption and secure authentication for Electronic Control Units (ECUs). Instead, Original Equipment Manufacturers (OEMs) seek security through obscurity by keeping secret the proprietary format with which they encode the information. Recently, it has been shown that the reuse of CAN frame IDs can be exploited to perform CAN bus reverse engineering without physical access to the vehicle, thus raising further security concerns in a connected environment. This work investigates whether anonymizing the frames of each newly released vehicle is sufficient to prevent CAN bus reverse engineering based on frame ID matching. The results show that, by adopting Machine Learning techniques, anonymized CAN frames can still be fingerprinted and identified in an unknown vehicle with an accuracy of up to 80 %.
ISSN: 2331-9860
Derhab, Abdelwahid.  2022.  Keynote Speaker 6: Intrusion detection systems using machine learning for the security of autonomous vehicles. 2022 15th International Conference on Security of Information and Networks (SIN). :1–1.
The emergence of smart cars has revolutionized the automotive industry. Today's vehicles are equipped with different types of electronic control units (ECUs) that enable autonomous functionalities like self-driving, self-parking, lane keeping, and collision avoidance. The ECUs are connected to each other through an in-vehicle network, named Controller Area Network. In this talk, we will present the different cyber attacks that target autonomous vehicles and explain how an intrusion detection system (IDS) using machine learning can play a role in securing the Controller Area Network. We will also discuss the main research contributions for the security of autonomous vehicles. Specifically, we will describe our IDS, named Histogram-based Intrusion Detection and Filtering framework. Next, we will talk about the machine learning explainability issue that limits the acceptability of machine learning in autonomous vehicles, and how it can be addressed using our novel intrusion detection system based on rule extraction methods from Deep Neural Networks.
2023-05-11
Chen, Jianhua, Yang, Wenchuan, Cui, Can, Zhang, Yang.  2022.  Research and Implementation of Intelligent Detection for Deserialization Attack Traffic. 2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST). :1206–1211.
In recent years, as an important part of the Internet, web applications have gradually penetrated into life. Now enterprises, units and institutions are using web applications regardless of size. Intrusion detection to effectively identify malicious traffic has become an inevitable requirement for the development of network security technology. In addition, the proportion of deserialization vulnerabilities is increasing. Traditional intrusion detection mostly focuses on the identification of SQL injection, XSS, and command execution, and there are few studies on the identification of deserialization attack traffic. This paper use a method to extracts relevant features from the deserialized traffic or even the obfuscated deserialized traffic by reorganizing the traffic and running the relevant content through simulation, and combines deep learning technology to make judgments to efficiently identify deserialization attacks. Finally, a prototype system was designed to capture related attacks in real-world. The technology can be used in the field of malicious traffic detection and help combat Internet crimes in the future.
2023-04-28
Gao, Hongbin, Wang, Shangxing, Zhang, Hongbin, Liu, Bin, Zhao, Dongmei, Liu, Zhen.  2022.  Network Security Situation Assessment Method Based on Absorbing Markov Chain. 2022 International Conference on Networking and Network Applications (NaNA). :556–561.
This paper has a new network security evaluation method as an absorbing Markov chain-based assessment method. This method is different from other network security situation assessment methods based on graph theory. It effectively refinement issues such as poor objectivity of other methods, incomplete consideration of evaluation factors, and mismatching of evaluation results with the actual situation of the network. Firstly, this method collects the security elements in the network. Then, using graph theory combined with absorbing Markov chain, the threat values of vulnerable nodes are calculated and sorted. Finally, the maximum possible attack path is obtained by blending network asset information to determine the current network security status. The experimental results prove that the method fully considers the vulnerability and threat node ranking and the specific case of system network assets, which makes the evaluation result close to the actual network situation.
Hao, Wei, Shen, Chuanbao, Yang, Xing, Wang, Chao.  2022.  Intelligent Penetration and Attack Simulation System Based on Attack Chain. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :204–207.
Vulnerability assessment is an important process for network security. However, most commonly used vulnerability assessment methods still rely on expert experience or rule-based automated scripts, which are difficult to meet the security requirements of increasingly complex network environment. In recent years, although scientists and engineers have made great progress on artificial intelligence in both theory and practice, it is a challenging to manufacture a mature high-quality intelligent products in the field of network security, especially in penetration testing based vulnerability assessment for enterprises. Therefore, in order to realize the intelligent penetration testing, Vul.AI with its rich experience in cyber attack and defense for many years has designed and developed a set of intelligent penetration and attack simulation system Ai.Scan, which is based on attack chain, knowledge graph and related evaluation algorithms. In this paper, the realization principle, main functions and application scenarios of Ai.Scan are introduced in detail.
ISSN: 2473-3547
Lu, Chaofan.  2022.  Research on the technical application of artificial intelligence in network intrusion detection system. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :109–112.
Network intrusion detection technology has been a popular application technology for current network security, but the existing network intrusion detection technology in the application process, there are problems such as low detection efficiency, low detection accuracy and other poor detection performance. To solve the above problems, a new treatment combining artificial intelligence with network intrusion detection is proposed. Artificial intelligence-based network intrusion detection technology refers to the application of artificial intelligence techniques, such as: neural networks, neural algorithms, etc., to network intrusion detection, and the application of these artificial intelligence techniques makes the automatic detection of network intrusion detection models possible.
Parhizgar, Nazanin, Jamshidi, Ali, Setoodeh, Peyman.  2022.  Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks using Machine Learning. 2022 30th International Conference on Electrical Engineering (ICEE). :974–979.
Cognitive radio (CR) networks are an emerging and promising technology to improve the utilization of vacant bands. In CR networks, security is a very noteworthy domain. Two threatening attacks are primary user emulation (PUE) and spectrum sensing data falsification (SSDF). A PUE attacker mimics the primary user signals to deceive the legitimate secondary users. The SSDF attacker falsifies its observations to misguide the fusion center to make a wrong decision about the status of the primary user. In this paper, we propose a scheme based on clustering the secondary users to counter SSDF attacks. Our focus is on detecting and classifying each cluster as reliable or unreliable. We introduce two different methods using an artificial neural network (ANN) for both methods and five more classifiers such as support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), logistic regression (LR), and decision tree (DR) for the second one to achieve this goal. Moreover, we consider deterministic and stochastic scenarios with white Gaussian noise (WGN) for attack strategy. Results demonstrate that our method outperforms a recently suggested scheme.
2023-04-14
Al-Qanour, Fahd bin Abdullah, Rajeyyagari, Sivaram.  2022.  Managing Information and Network Security using Chaotic Bio Molecular Computing Technique. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :893–896.
Requirement Elicitation is a key phase in software development. The fundamental goal of security requirement elicitation is to gather appropriate security needs and policies from stakeholders or organizations. The majority of systems fail due to incorrect elicitation procedures, affecting development time and cost. Security requirement elicitation is a major activity of requirement engineering that requires the attention of developers and other stakeholders. To produce quality requirements during software development, the authors suggested a methodology for effective requirement elicitation. Many challenges surround requirement engineering. These concerns can be connected to scope, preconceptions in requirements, etc. Other difficulties include user confusion over technological specifics, leading to confusing system aims. They also don't realize that the requirements are dynamic and prone to change. To protect the privacy of medical images, the proposed image cryptosystem uses a CCM-generated chaotic key series to confuse and diffuse them. A hexadecimal pre-processing technique is used to increase the security of color images utilising a hyper chaos-based image cryptosystem. Finally, a double-layered security system for biometric photos is built employing chaos and DNA cryptography.
ISSN: 2768-5330
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.  2022.  Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
Wang, Haofan.  2022.  Botnet Detection via Machine Learning Techniques. 2022 International Conference on Big Data, Information and Computer Network (BDICN). :831–836.
The botnet is a serious network security threat that can cause servers crash, so how to detect the behavior of Botnet has already become an important part of the research of network security. DNS(Domain Name System) request is the first step for most of the mainframe computers controlled by Botnet to communicate with the C&C(command; control) server. The detection of DNS request domain names is an important way for mainframe computers controlled by Botnet. However, the detection method based on fixed rules is hard to take effect for botnet based on DGA(Domain Generation Algorithm) because malicious domain names keep evolving and derive many different generation methods. Contrasted with the traditional methods, the method based on machine learning is a better way to detect it by learning and modeling the DGA. This paper presents a method based on the Naive Bayes model, the XGBoost model, the SVM(Support Vector Machine) model, and the MLP(Multi-Layer Perceptron) model, and tests it with real data sets collected from DGA, Alexa, and Secrepo. The experimental results show the precision score, the recall score, and the F1 score for each model.