Biblio
Automatic Identification System (AIS) plays a leading role in maritime navigation, traffic control, local and global maritime situational awareness. Today, the reliable and secure AIS operation is threatened by probable cyber attacks such as imitation of ghost vessels, false distress or security messages, or fake virtual aids-to-navigation. We propose a method for ensuring the authentication and integrity of AIS messages based on the use of the Message Authentication Code scheme and digital watermarking (WM) technology to organize an additional tag transmission channel. The method provides full compatibility with the existing AIS functionality.
Because the underwater acoustic communication network transmits data through the underwater acoustic wireless link, the Underwater Acoustic Communication Network is easy to suffer from the external artificial interference, in this paper, the detection algorithm of wormhole attack in Underwater Acoustic Communication Network based on Azimuth measurement technology is studied. The existence of wormhole attack is judged by Azimuth or distance outliers, and the security performance of underwater acoustic communication network is evaluated. The influence of different azimuth direction errors on the detection probability of wormhole attack is analyzed by simulation. The simulation results show that this method has a good detection effect for Underwater Acoustic Communication Network.
Swarm intelligence, a nature-inspired concept that includes multiplicity, stochasticity, randomness, and messiness is emergent in most real-life problem-solving. The concept of swarming can be integrated with herding predators in an ecological system. This paper presents the development of stabilizing velocity-based controllers for a Lagrangian swarm of \$nın \textbackslashtextbackslashmathbbN\$ individuals, which are supposed to capture a moving target (intruder). The controllers are developed from a Lyapunov function, total potentials, designed via Lyapunov-based control scheme (LbCS) falling under the classical approach of artificial potential fields method. The interplay of the three central pillars of LbCS, which are safety, shortness, and smoothest course for motion planning, results in cost and time effectiveness and efficiency of velocity controllers. Computer simulations illustrate the effectiveness of control laws.