Visible to the public Biblio

Filters: Keyword is Navigation  [Clear All Filters]
2023-03-31
Wu, Xiaoliang, Rajan, Ajitha.  2022.  Catch Me If You Can: Blackbox Adversarial Attacks on Automatic Speech Recognition using Frequency Masking. 2022 29th Asia-Pacific Software Engineering Conference (APSEC). :169–178.
Automatic speech recognition (ASR) models are used widely in applications for voice navigation and voice control of domestic appliances. ASRs have been misused by attackers to generate malicious outputs by attacking the deep learning component within ASRs. To assess the security and robustnesss of ASRs, we propose techniques within our framework SPAT that generate blackbox (agnostic to the DNN) adversarial attacks that are portable across ASRs. This is in contrast to existing work that focuses on whitebox attacks that are time consuming and lack portability. Our techniques generate adversarial attacks that have no human audible difference by manipulating the input speech signal using a psychoacoustic model that maintains the audio perturbations below the thresholds of human perception. We propose a framework SPAT with three attack generation techniques based on the psychoacoustic concept and frame selection techniques to selectively target the attack. We evaluate portability and effectiveness of our techniques using three popular ASRs and two input audio datasets using the metrics- Word Error Rate (WER) of output transcription, Similarity to original audio, attack Success Rate on different ASRs and Detection score by a defense system. We found our adversarial attacks were portable across ASRs, not easily detected by a state-of the-art defense system, and had significant difference in output transcriptions while sounding similar to original audio.
2023-03-06
Mainampati, Manasa, Chandrasekaran, Balasubramaniyan.  2021.  Implementation of Human in The Loop on the TurtleBot using Reinforced Learning methods and Robot Operating System (ROS). 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0448–0452.
In this paper, an implementation of a human in the loop (HITL) technique for robot navigation in an indoor environment is described. The HITL technique is integrated into the reinforcement learning algorithms for mobile robot navigation. Reinforcement algorithms, specifically Q-learning and SARSA, are used combined with HITL since these algorithms are good in exploration and navigation. Turtlebot3 has been used as the robot for validating the algorithms by implementing the system using Robot Operating System and Gazebo. The robot-assisted with human feedback was found to be better in navigation task execution when compared to standard algorithms without using human in the loop. This is a work in progress and the next step of this research is exploring other reinforced learning methods and implementing them on a physical robot.
ISSN: 2644-3163
2023-02-17
Taib, Abidah Mat, Abdullah, Ariff As-Syadiqin, Ariffin, Muhammad Azizi Mohd, Ruslan, Rafiza.  2022.  Threats and Vulnerabilities Handling via Dual-stack Sandboxing Based on Security Mechanisms Model. 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE). :113–118.
To train new staff to be efficient and ready for the tasks assigned is vital. They must be equipped with knowledge and skills so that they can carry out their responsibility to ensure smooth daily working activities. As transitioning to IPv6 has taken place for more than a decade, it is understood that having a dual-stack network is common in any organization or enterprise. However, many Internet users may not realize the importance of IPv6 security due to a lack of awareness and knowledge of cyber and computer security. Therefore, this paper presents an approach to educating people by introducing a security mechanisms model that can be applied in handling security challenges via network sandboxing by setting up an isolated dual stack network testbed using GNS3 to perform network security analysis. The finding shows that applying security mechanisms such as access control lists (ACLs) and host-based firewalls can help counter the attacks. This proves that knowledge and skills to handle dual-stack security are crucial. In future, more kinds of attacks should be tested and also more types of security mechanisms can be applied on a dual-stack network to provide more information and to provide network engineers insights on how they can benefit from network sandboxing to sharpen their knowledge and skills.
Mayoral-Vilches, Victor, White, Ruffin, Caiazza, Gianluca, Arguedas, Mikael.  2022.  SROS2: Usable Cyber Security Tools for ROS 2. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :11253–11259.
ROS 2 is rapidly becoming a standard in the robotics industry. Built upon DDS as its default communication middleware and used in safety-critical scenarios, adding secu-rity to robots and ROS computational graphs is increasingly becoming a concern. The present work introduces SROS2, a series of developer tools and libraries that facilitate adding security to ROS 2 graphs. Focusing on a usability-centric approach in SROS2, we present a methodology for securing graphs systematically while following the DevSecOps model. We also demonstrate the use of our security tools by presenting an application case study that considers securing a graph using the popular Navigation2 and SLAM Toolbox stacks applied in a TurtieBot3 robot. We analyse the current capabilities of SROS2 and discuss the shortcomings, which provides insights for future contributions and extensions. Ultimately, we present SROS2 as usable security tools for ROS 2 and argue that without usability, security in robotics will be greatly impaired.
ISSN: 2153-0866
Lychko, Sergey, Tsoy, Tatyana, Li, Hongbing, Martínez-García, Edgar A., Magid, Evgeni.  2022.  ROS Network Security for a Swing Doors Automation in a Robotized Hospital. 2022 International Siberian Conference on Control and Communications (SIBCON). :1–6.
Internet of Medical Things (IoMT) is a rapidly growing branch of IoT (Internet of Things), which requires special treatment to cyber security due to confidentiality of healthcare data and patient health threat. Healthcare data and automated medical devices might become vulnerable targets of malicious cyber-attacks. While a large number of robotic applications, including medical and healthcare, employ robot operating system (ROS) as their backbone, not enough attention is paid for ROS security. The paper discusses a security of ROS-based swing doors automation in the context of a robotic hospital framework, which should be protected from cyber-attacks.
ISSN: 2380-6516
2023-02-03
Moroni, Davide, Pieri, Gabriele, Reggiannini, Marco, Tampucci, Marco.  2022.  A mobile crowdsensing app for improved maritime security and awareness. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :103–105.
The marine and maritime domain is well represented in the Sustainable Development Goals (SDG) envisaged by the United Nations, which aim at conserving and using the oceans, seas and their resources for sustainable development. At the same time, there is a need for improved safety in navigation, especially in coastal areas. Up to date, there exist operational services based on advanced technologies, including remote sensing and in situ monitoring networks which provide aid to the navigation and control over the environment for its preservation. Yet, the possibilities offered by crowdsensing have not yet been fully explored. This paper addresses this issue by presenting an app based on a crowdsensing approach for improved safety and awareness at sea. The app can be integrated into more comprehensive systems and frameworks for environmental monitoring as envisaged in our future work.
2023-01-20
Shyshkin, Oleksandr.  2022.  Cybersecurity Providing for Maritime Automatic Identification System. 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO). :736–740.

Automatic Identification System (AIS) plays a leading role in maritime navigation, traffic control, local and global maritime situational awareness. Today, the reliable and secure AIS operation is threatened by probable cyber attacks such as imitation of ghost vessels, false distress or security messages, or fake virtual aids-to-navigation. We propose a method for ensuring the authentication and integrity of AIS messages based on the use of the Message Authentication Code scheme and digital watermarking (WM) technology to organize an additional tag transmission channel. The method provides full compatibility with the existing AIS functionality.

2023-01-06
Silva, Ryan, Hickert, Cameron, Sarfaraz, Nicolas, Brush, Jeff, Silbermann, Josh, Sookoor, Tamim.  2022.  AlphaSOC: Reinforcement Learning-based Cybersecurity Automation for Cyber-Physical Systems. 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS). :290—291.
Achieving agile and resilient autonomous capabilities for cyber defense requires moving past indicators and situational awareness into automated response and recovery capabilities. The objective of the AlphaSOC project is to use state of the art sequential decision-making methods to automatically investigate and mitigate attacks on cyber physical systems (CPS). To demonstrate this, we developed a simulation environment that models the distributed navigation control system and physics of a large ship with two rudders and thrusters for propulsion. Defending this control network requires processing large volumes of cyber and physical signals to coordi-nate defensive actions over many devices with minimal disruption to nominal operation. We are developing a Reinforcement Learning (RL)-based approach to solve the resulting sequential decision-making problem that has large observation and action spaces.
Wolsing, Konrad, Saillard, Antoine, Bauer, Jan, Wagner, Eric, van Sloun, Christian, Fink, Ina Berenice, Schmidt, Mari, Wehrle, Klaus, Henze, Martin.  2022.  Network Attacks Against Marine Radar Systems: A Taxonomy, Simulation Environment, and Dataset. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :114—122.
Shipboard marine radar systems are essential for safe navigation, helping seafarers perceive their surroundings as they provide bearing and range estimations, object detection, and tracking. Since onboard systems have become increasingly digitized, interconnecting distributed electronics, radars have been integrated into modern bridge systems. But digitization increases the risk of cyberattacks, especially as vessels cannot be considered air-gapped. Consequently, in-depth security is crucial. However, particularly radar systems are not sufficiently protected against harmful network-level adversaries. Therefore, we ask: Can seafarers believe their eyes? In this paper, we identify possible attacks on radar communication and discuss how these threaten safe vessel operation in an attack taxonomy. Furthermore, we develop a holistic simulation environment with radar, complementary nautical sensors, and prototypically implemented cyberattacks from our taxonomy. Finally, leveraging this environment, we create a comprehensive dataset (RadarPWN) with radar network attacks that provides a foundation for future security research to secure marine radar communication.
2023-01-05
Tzoneva, Albena, Momcheva, Galina, Stoyanov, Borislav.  2022.  Vendor Cybersecurity Risk Assessment in an Autonomous Mobility Ecosystem. 2022 10th International Scientific Conference on Computer Science (COMSCI). :1—7.
Vendor cybersecurity risk assessment is of critical importance to smart city infrastructure and sustainability of the autonomous mobility ecosystem. Lack of engagement in cybersecurity policies and process implementation by the tier companies providing hardware or services to OEMs within this ecosystem poses a significant risk to not only the individual companies but to the ecosystem overall. The proposed quantitative method of estimating cybersecurity risk allows vendors to have visibility to the financial risk associated with potential threats and to consequently allocate adequate resources to cybersecurity. It facilitates faster implementation of defense measures and provides a useful tool in the vendor selection process. The paper focuses on cybersecurity risk assessment as a critical part of the overall company mission to create a sustainable structure for maintaining cybersecurity health. Compound cybersecurity risk and impact on company operations as outputs of this quantitative analysis present a unique opportunity to strategically plan and make informed decisions towards acquiring a reputable position in a sustainable ecosystem. This method provides attack trees and assigns a risk factor to each vendor thus offering a competitive advantage and an insight into the supply chain risk map. This is an innovative way to look at vendor cybersecurity posture. Through a selection of unique industry specific parameters and a modular approach, this risk assessment model can be employed as a tool to navigate the supply base and prevent significant financial cost. It generates synergies within the connected vehicle ecosystem leading to a safe and sustainable economy.
2022-11-18
Hariyanto, Budi, Ramli, Kalamullah, Suryanto, Yohan.  2021.  Risk Management System for Operational Services in Data Center : DC Papa Oscar Cikeas Case study. 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST). :118—123.
The presence of the Information Technology System (ITS) has become one of the components for basic needs that must be met in navigating through the ages. Organizational programs in responding to the industrial era 4.0 make the use of ITS is a must in order to facilitate all processes related to quality service in carrying out the main task of protecting and serving the community. The implementation of ITS is actually not easy forthe threat of challenges and disturbances in the form of risks haunts ITS's operations. These conditions must be able to be identified and analyzed and then action can be executed to reduce the negative impact, so the risks are acceptable. This research will study about ITS risk management using the the guideline of Information Technology Infrastructure Library (ITIL) to formulate an operational strategy in order ensure that STI services at the Papa Oscar Cikeas Data Center (DC) can run well in the form of recommendations. Based on a survey on the implementing elements of IT function, 82.18% of respondents considered that the IT services provided by DC were very important, 86.49% of respondents knew the importance of having an emergency plan to ensure their products and services were always available, and 67.17% of respondents believes that DC is well managed. The results of the study concludes that it is necessary to immediately form a structural DC organization to prepare a good path for the establishment of a professional data center in supporting public service information technology systems.
2022-09-09
Teichel, Kristof, Lehtonen, Tapio, Wallin, Anders.  2021.  Assessing Time Transfer Methods for Accuracy and Reliability : Navigating the Time Transfer Trade-off Triangle. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—4.
We present a collected overview on how to assess both the accuracy and reliability levels and relate them to the required effort, for different digital methods of synchronizing clocks. The presented process is intended for end users who require time synchronization but are not certain about how to judge at least one of the aspects. It can not only be used on existing technologies but should also be transferable to many future approaches. We further relate this approach to several examples. We discuss in detail the approach of medium-range White Rabbit connections over dedicated fibers, a method that occupies an extreme corner in the evaluation, where the effort is exceedingly high, but also yields excellent accuracy and significant reliability.
2022-07-12
Pelissero, Nicolas, Laso, Pedro Merino, Puentes, John.  2021.  Model graph generation for naval cyber-physical systems. OCEANS 2021: San Diego – Porto. :1—5.
Naval vessels infrastructures are evolving towards increasingly connected and automatic systems. Such accelerated complexity boost to search for more adapted and useful navigation devices may be at odds with cybersecurity, making necessary to develop adapted analysis solutions for experts. This paper introduces a novel process to visualize and analyze naval Cyber-Physical Systems (CPS) using oriented graphs, considering operational constraints, to represent physical and functional connections between multiple components of CPS. Rapid prototyping of interconnected components is implemented in a semi-automatic manner by defining the CPS’s digital and physical systems as nodes, along with system variables as edges, to form three layers of an oriented graph, using the open-source Neo4j software suit. The generated multi-layer graph can be used to support cybersecurity analysis, like attacks simulation, anomaly detection and propagation estimation, applying existing or new algorithms.
2022-05-06
Palisetti, Sanjana, Chandavarkar, B. R., Gadagkar, Akhilraj V..  2021.  Intrusion Detection of Sinkhole Attack in Underwater Acoustic Sensor Networks. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—7.
Underwater networks have the potential to allow previously unexplored applications as well as improve our ability to observe and forecast the ocean. Underwater acoustic sensor networks (UASNs) are often deployed in unprecedented and hostile waters and face many security threats. Applications based on UASNs such as coastal defense, pollution monitoring, assisted navigation to name a few, require secure communication. A new set of communication protocols and cooperative coordination algorithms have been proposed to enable collaborative monitoring tasks. However, such protocols overlook security as a key performance indicator. Spoofing, altering, or replaying routing information can affect the entire network, making UASN vulnerable to routing attacks such as selective forwarding, sinkhole attack, Sybil attack, acknowledgement spoofing and HELLO flood attack. The lack of security against such threats is startling if it is observed that security is indeed an important requirement in many emerging civilian and military applications. In this work, the sinkhole attack prevalent among UASNs is looked at and discuss mitigation approaches that can feasibly be implemented in UnetStack3.
Junqing, Zhang, Gangqiang, Zhang, Junkai, Liu.  2021.  Wormhole Attack Detecting in Underwater Acoustic Communication Networks. 2021 OES China Ocean Acoustics (COA). :647—650.

Because the underwater acoustic communication network transmits data through the underwater acoustic wireless link, the Underwater Acoustic Communication Network is easy to suffer from the external artificial interference, in this paper, the detection algorithm of wormhole attack in Underwater Acoustic Communication Network based on Azimuth measurement technology is studied. The existence of wormhole attack is judged by Azimuth or distance outliers, and the security performance of underwater acoustic communication network is evaluated. The influence of different azimuth direction errors on the detection probability of wormhole attack is analyzed by simulation. The simulation results show that this method has a good detection effect for Underwater Acoustic Communication Network.

2022-03-25
Kumar, Sandeep A., Chand, Kunal, Paea, Lata I., Thakur, Imanuel, Vatikani, Maria.  2021.  Herding Predators Using Swarm Intelligence. 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). :1—6.

Swarm intelligence, a nature-inspired concept that includes multiplicity, stochasticity, randomness, and messiness is emergent in most real-life problem-solving. The concept of swarming can be integrated with herding predators in an ecological system. This paper presents the development of stabilizing velocity-based controllers for a Lagrangian swarm of \$nın \textbackslashtextbackslashmathbbN\$ individuals, which are supposed to capture a moving target (intruder). The controllers are developed from a Lyapunov function, total potentials, designed via Lyapunov-based control scheme (LbCS) falling under the classical approach of artificial potential fields method. The interplay of the three central pillars of LbCS, which are safety, shortness, and smoothest course for motion planning, results in cost and time effectiveness and efficiency of velocity controllers. Computer simulations illustrate the effectiveness of control laws.

2022-02-04
Roney, James, Appel, Troy, Pinisetti, Prateek, Mickens, James.  2021.  Identifying Valuable Pointers in Heap Data. 2021 IEEE Security and Privacy Workshops (SPW). :373—382.
Historically, attackers have sought to manipulate programs through the corruption of return addresses, function pointers, and other control flow data. However, as protections like ASLR, stack canaries, and no-execute bits have made such attacks more difficult, data-oriented exploits have received increasing attention. Such exploits try to subvert a program by reading or writing non-control data, without introducing any foreign code or violating the program’s legitimate control flow graph. Recently, a data-oriented exploitation technique called memory cartography was introduced, in which an attacker navigates between allocated memory regions using a precompiled map to disclose sensitive program data. The efficacy of memory cartography is dependent on inter-region pointers being located at constant offsets within memory regions; thus, cartographic attacks are difficult to launch against memory regions like heaps and stacks that have nondeterministic layouts. In this paper, we lower the barrier to successful attacks against nondeterministic memory, demonstrating that pointers between regions of memory often possess unique “signatures” that allow attackers to identify them with high accuracy. These signatures are accurate even when the pointers reside in non-deterministic memory areas. In many real-world programs, this allows an attacker that is capable of reading bytes from a single heap to access all of process memory. Our findings underscore the importance of memory isolation via separate address spaces.
2022-02-03
Arafin, Md Tanvir, Kornegay, Kevin.  2021.  Attack Detection and Countermeasures for Autonomous Navigation. 2021 55th Annual Conference on Information Sciences and Systems (CISS). :1—6.
Advances in artificial intelligence, machine learning, and robotics have profoundly impacted the field of autonomous navigation and driving. However, sensor spoofing attacks can compromise critical components and the control mechanisms of mobile robots. Therefore, understanding vulnerabilities in autonomous driving and developing countermeasures remains imperative for the safety of unmanned vehicles. Hence, we demonstrate cross-validation techniques for detecting spoofing attacks on the sensor data in autonomous driving in this work. First, we discuss how visual and inertial odometry (VIO) algorithms can provide a root-of-trust during navigation. Then, we develop examples for sensor data spoofing attacks using the open-source driving dataset. Next, we design an attack detection technique using VIO algorithms that cross-validates the navigation parameters using the IMU and the visual data. Following, we consider hardware-dependent attack survival mechanisms that support an autonomous system during an attack. Finally, we also provide an example of spoofing survival technique using on-board hardware oscillators. Our work demonstrates the applicability of classical mobile robotics algorithms and hardware security primitives in defending autonomous vehicles from targeted cyber attacks.
Lee, Hyo-Cheol, Lee, Seok-Won.  2021.  Towards Provenance-based Trust-aware Model for Socio-Technically Connected Self-Adaptive System. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :761—767.
In a socio-technically connected environment, self-adaptive systems need to cooperate with others to collect information to provide context-dependent functionalities to users. A key component of ensuring safe and secure cooperation is finding trustworthy information and its providers. Trust is an emerging quality attribute that represents the level of belief in the cooperative environments and serves as a promising solution in this regard. In this research, we will focus on analyzing trust characteristics and defining trust-aware models through the trust-aware goal model and the provenance model. The trust-aware goal model is designed to represent the trust-related requirements and their relationships. The provenance model is analyzed as trust evidence to be used for the trust evaluation. The proposed approach contributes to build a comprehensive understanding of trust and design a trust-aware self-adaptive system. In order to show the feasibility of the proposed approach, we will conduct a case study with the crowd navigation system for an unmanned vehicle system.
Vijayasundara, S.M., Udayangani, N.K.S., Camillus, P.E., Jayatunga, E.H..  2021.  Security Robot for Real-time Monitoring and Capturing. 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS). :434—439.
Autonomous navigation of a robot is more challenging in an uncontrolled environment owing to the necessity of coordination among several activities. This includes, creating a map of the surrounding, localizing the robot inside the map, generating a motion plan consistent with the map, executing the plan with control and all other tasks involved concurrently. Moreover, autonomous navigation problems are significant for future robotics applications such as package delivery, security, cleaning, agriculture, surveillance, search and rescue, construction, and transportation which take place in uncontrolled environments. Therefore, an attempt has been made in this research to develop a robot which could function as a security agent for a house to address the aforesaid particulars. This robot has the capability to navigate autonomously in the prescribed map of the operating zone by the user. The desired map can be generated using a Light Detection and Ranging (LiDAR) sensor. For robot navigation, it requires to pick out the robot location accurately itself, otherwise robot will not move autonomously to a particular target. Therefore, Adaptive Monte Carlo Localization (AMCL) method was used to validate the accuracy of robot localization process. Moreover, additional sensors were placed around the building to sense the prevailing security threats from intruders with the aid of the robot.
2022-01-25
Hassan, Alzubair, Nuseibeh, Bashar, Pasquale, Liliana.  2021.  Engineering Adaptive Authentication. 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :275—280.
Adaptive authentication systems identify and enforce suitable methods to verify that someone (user) or something (device) is eligible to access a service or a resource. An authentication method is usually adapted in response to changes in the security risk or the user's behaviour. Previous work on adaptive authentication systems provides limited guidance about i) what and how contextual factors can affect the selection of an authentication method; ii) which requirements are relevant to an adaptive authentication system and iii) how authentication methods can affect the satisfaction of the relevant requirements. In this paper, we provide a holistic framework informed by previous research to characterize the adaptive authentication problem and support the development of an adaptive authentication system. Our framework explicitly considers the contextual factors that can trigger an adaptation, the requirements that are relevant during decision making and their trade-offs, as well as the authentication methods that can change as a result of an adaptation. From the gaps identified in the literature, we elicit a set of challenges that can be addressed in future research on adaptive authentication.
Azevedo, João, Faria, Pedro, Romero, Luís.  2021.  Framework for Creating Outdoors Augmented and Virtual Reality. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.
In this article we propose the architecture of a system in which its central objective is focused on creating a complete framework for creating outdoor environments of Augmented Reality (AR) and Virtual Reality (VR) allowing its users to digitize reality for hypermedia format. Subsequently, there will be an internal process with the objective of merging / grouping these 3D models, thus enabling clear and intuitive navigation within infinite virtual realities (based on the captured real world). In this way, the user is able to create points of interest within their parallel realities, being able to navigate and traverse their new worlds through these points.
2021-11-30
Songala, Komal Kumar, Ammana, Supraja Reddy, Ramachandruni, Hari Chandana, Achanta, Dattatreya Sarma.  2020.  Simplistic Spoofing of GPS Enabled Smartphone. 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE). :460–463.
Intentional interference such as spoofing is an emerging threat to GPS receivers used in both civilian and defense applications. With the majority of smartphones relying on GPS for positioning and navigation, the vulnerability of these phones to spoofing attacks is an issue of security concern. In this paper, it is demonstrated that is easy to successfully spoof a smartphone using a simplistic spoofing technique. A spoofing signal is generated using open-source signal simulator and transmitted using a low-cost SDR. In view of the tremendously increasing usage of GPS enabled smartphones, it is necessary to develop suitable countermeasures for spoofing. This work carries significance as it would help in understanding the effects of spoofing at various levels of signal processing in the receiver and develop advanced spoofing detection and mitigation techniques.
2021-09-07
Ahmed, Faruk, Mahmud, Md Sultan, Yeasin, Mohammed.  2020.  Assistive System for Navigating Complex Realistic Simulated World Using Reinforcement Learning. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
Finding a free path without obstacles or situation that pose minimal risk is critical for safe navigation. People who are sighted and people who are blind or visually impaired require navigation safety while walking on a sidewalk. In this paper we develop assistive navigation on a sidewalk by integrating sensory inputs using reinforcement learning. We train the reinforcement model in a simulated robotic environment which is used to avoid sidewalk obstacles. A conversational agent is built by training with real conversation data. The reinforcement learning model along with a conversational agent improved the obstacle avoidance experience about 2.5% from the base case which is 78.75%.
2021-06-01
Cideron, Geoffrey, Seurin, Mathieu, Strub, Florian, Pietquin, Olivier.  2020.  HIGhER: Improving instruction following with Hindsight Generation for Experience Replay. 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :225–232.
Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. While these characterizations may foster instructing, conditioning or structuring interactive agent behavior, it remains an open-problem to correctly relate language understanding and reinforcement learning in even simple instruction following scenarios. This joint learning problem is alleviated through expert demonstrations, auxiliary losses, or neural inductive biases. In this paper, we propose an orthogonal approach called Hindsight Generation for Experience Replay (HIGhER) that extends the Hindsight Experience Replay approach to the language-conditioned policy setting. Whenever the agent does not fulfill its instruction, HIGhER learns to output a new directive that matches the agent trajectory, and it relabels the episode with a positive reward. To do so, HIGhER learns to map a state into an instruction by using past successful trajectories, which removes the need to have external expert interventions to relabel episodes as in vanilla HER. We show the efficiency of our approach in the BabyAI environment, and demonstrate how it complements other instruction following methods.