Lee, Bowhyung, Han, Donghwa, Lee, Namyoon.
2022.
Demo: Real-Time Implementation of Block Orthogonal Sparse Superposition Codes. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :1–2.
Short-packet communication is a key enabler of various Internet of Things applications that require higher-level security. This proposal briefly reviews block orthogonal sparse superposition (BOSS) codes, which are applicable for secure short-packet transmissions. In addition, following the IEEE 802.11a Wi-Fi standards, we demonstrate the real-time performance of secure short packet transmission using a software-defined radio testbed to verify the feasibility of BOSS codes in a multi-path fading channel environment.
ISSN: 2694-2941
Yang, Dongli, Huang, Jingxuan, Liu, Xiaodong, Sun, Ce, Fei, Zesong.
2022.
A Polar Coding Scheme for Achieving Secrecy of Fading Wiretap Channels in UAV Communications. 2022 IEEE/CIC International Conference on Communications in China (ICCC). :468–473.
The high maneuverability of the unmanned aerial vehicle (UAV), facilitating fast and flexible deployment of communication infrastructures, brings potentially valuable opportunities to the future wireless communication industry. Nevertheless, UAV communication networks are faced with severe security challenges since air to ground (A2G) communications are more vulnerable to eavesdropping attacks than terrestrial communications. To solve the problem, we propose a coding scheme that hierarchically utilizes polar codes in order to address channel multi-state variation for UAV wiretap channels, without the instantaneous channel state information (CSI) known at the transmitter. The theoretical analysis and simulation results show that the scheme achieves the security capacity of the channel and meets the conditions of reliability and security.
ISSN: 2377-8644
Peng, Haifeng, Cao, Chunjie, Sun, Yang, Li, Haoran, Wen, Xiuhua.
2022.
Blind Identification of Channel Codes under AWGN and Fading Conditions via Deep Learning. 2022 International Conference on Networking and Network Applications (NaNA). :67–73.
Blind identification of channel codes is crucial in intelligent communication and non-cooperative signal processing, and it plays a significant role in wireless physical layer security, information interception, and information confrontation. Previous researches show a high computation complexity by manual feature extractions, in addition, problems of indisposed accuracy and poor robustness are to be resolved in a low signal-to-noise ratio (SNR). For solving these difficulties, based on deep residual shrinkage network (DRSN), this paper proposes a novel recognizer by deep learning technologies to blindly distinguish the type and the parameter of channel codes without any prior knowledge or channel state, furthermore, feature extractions by the neural network from codewords can avoid intricate calculations. We evaluated the performance of this recognizer in AWGN, single-path fading, and multi-path fading channels, the results of the experiments showed that the method we proposed worked well. It could achieve over 85 % of recognition accuracy for channel codes in AWGN channels when SNR is not lower than 4dB, and provide an improvement of more than 5% over the previous research in recognition accuracy, which proves the validation of the proposed method.
Salman, Hanadi, Naderi, Sanaz, Arslan, Hüseyin.
2022.
Channel-Dependent Code Allocation for Downlink MC-CDMA System Aided Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Spreading codes are the core of the spread spectrum transmission. In this paper, a novel channel-dependent code allocation procedure for enhancing security in multi-carrier code division multiple access (MC-CDMA) system is proposed and investigated over frequency-selective fading. The objective of the proposed technique is to assign the codes to every subcarrier of active/legitimate receivers (Rxs) based on their channel frequency response (CFR). By that, we ensure security for legitimate Rxs against eavesdropping while preserving mutual confidentiality between the legitimate Rxs themselves. To do so, two assigning modes; fixed assigning mode (FAM) and adaptive assigning mode (AAM), are exploited. The effect of the channel estimation error and the number of legitimate Rxs on the bit error rate (BER) performance is studied. The presented simulations show that AAM provides better security with a complexity trade-off compared to FAM. While the latter is more robust against the imperfection of channel estimation.
ISSN: 2577-2465