Biblio
Video summarization aims to improve the efficiency of large-scale video browsing through producting concise summaries. It has been popular among many scenarios such as video surveillance, video review and data annotation. Traditional video summarization techniques focus on filtration in image features dimension or image semantics dimension. However, such techniques can make a large amount of possible useful information lost, especially for many videos with rich text semantics like interviews, teaching videos, in that only the information relevant to the image dimension will be retained. In order to solve the above problem, this paper considers video summarization as a continuous multi-dimensional decision-making process. Specifically, the summarization model predicts a probability for each frame and its corresponding text, and then we designs reward methods for each of them. Finally, comprehensive summaries in two dimensions, i.e. images and semantics, is generated. This approach is not only unsupervised and does not rely on labels and user interaction, but also decouples the semantic and image summarization models to provide more usable interfaces for subsequent engineering use.
ISSN: 2693-9371
To exploit high temporal correlations in video frames of the same scene, the current frame is predicted from the already-encoded reference frames using block-based motion estimation and compensation techniques. While this approach can efficiently exploit the translation motion of the moving objects, it is susceptible to other types of affine motion and object occlusion/deocclusion. Recently, deep learning has been used to model the high-level structure of human pose in specific actions from short videos and then generate virtual frames in future time by predicting the pose using a generative adversarial network (GAN). Therefore, modelling the high-level structure of human pose is able to exploit semantic correlation by predicting human actions and determining its trajectory. Video surveillance applications will benefit as stored “big” surveillance data can be compressed by estimating human pose trajectories and generating future frames through semantic correlation. This paper explores a new way of video coding by modelling human pose from the already-encoded frames and using the generated frame at the current time as an additional forward-referencing frame. It is expected that the proposed approach can overcome the limitations of the traditional backward-referencing frames by predicting the blocks containing the moving objects with lower residuals. Our experimental results show that the proposed approach can achieve on average up to 2.83 dB PSNR gain and 25.93% bitrate savings for high motion video sequences compared to standard video coding.
ISSN: 2642-9357
This work-in-progress paper proposes a design methodology that addresses the complexity and heterogeneity of cyber-physical systems (CPS) while simultaneously proving resilient control logic and security properties. The design methodology involves a formal methods-based approach by translating the complex control logic and security properties of a water flow CPS into timed automata. Timed automata are a formal model that describes system behaviors and properties using mathematics-based logic languages with precision. Due to the semantics that are used in developing the formal models, verification techniques, such as theorem proving and model checking, are used to mathematically prove the specifications and security properties of the CPS. This work-in-progress paper aims to highlight the need for formalizing plant models by creating a timed automata of the physical portions of the water flow CPS. Extending the time automata with control logic, network security, and privacy control processes is investigated. The final model will be formally verified to prove the design specifications of the water flow CPS to ensure efficacy and security.
The SPECTRE family of speculative execution attacks has required a rethinking of formal methods for security. Approaches based on operational speculative semantics have made initial inroads towards finding vulnerable code and validating defenses. However, with each new attack grows the amount of microarchitectural detail that has to be integrated into the underlying semantics. We propose an alternative, lightweight and axiomatic approach to specifying speculative semantics that relies on insights from memory models for concurrency. We use the CAT modeling language for memory consistency to specify execution models that capture speculative control flow, store-to-load forwarding, predictive store forwarding, and memory ordering machine clears. We present a bounded model checking framework parameterized by our speculative CAT models and evaluate its implementation against the state of the art. Due to the axiomatic approach, our models can be rapidly extended to allow our framework to detect new types of attacks and validate defenses against them.
ISSN: 2375-1207
Server-side web applications are vulnerable to request races. While some previous studies of real-world request races exist, they primarily focus on the root cause of these bugs. To better combat request races in server-side web applications, we need a deep understanding of their characteristics. In this paper, we provide a complementary focus on race effects and fixes with an enlarged set of request races from web applications developed with Object-Relational Mapping (ORM) frameworks. We revisit characterization questions used in previous studies on newly included request races, distinguish the external and internal effects of request races, and relate requestrace fixes with concurrency control mechanisms in languages and frameworks for developing server-side web applications. Our study reveals that: (1) request races from ORM-based web applications share the same characteristics as those from raw-SQL web applications; (2) request races violating application semantics without explicit crashes and error messages externally are common, and latent request races, which only corrupt some shared resource internally but require extra requests to expose the misbehavior, are also common; and (3) various fix strategies other than using synchronization mechanisms are used to fix request races. We expect that our results can help developers better understand request races and guide the design and development of tools for combating request races.
ISSN: 2574-3864
Smart metering is a mechanism through which fine-grained electricity usage data of consumers is collected periodically in a smart grid. However, a growing concern in this regard is that the leakage of consumers' consumption data may reveal their daily life patterns as the state-of-the-art metering strategies lack adequate security and privacy measures. Many proposed solutions have demonstrated how the aggregated metering information can be transformed to obscure individual consumption patterns without affecting the intended semantics of smart grid operations. In this paper, we expose a complete break of such an existing privacy preserving metering scheme [10] by determining individual consumption patterns efficiently, thus compromising its privacy guarantees. The underlying methodol-ogy of this scheme allows us to - i) retrieve the lower bounds of the privacy parameters and ii) establish a relationship between the privacy preserved output readings and the initial input readings. Subsequently, we present a rigorous experimental validation of our proposed attacking methodology using real-life dataset to highlight its efficacy. In summary, the present paper queries: Is the Whole lesser than its Parts? for such privacy aware metering algorithms which attempt to reduce the information leakage of aggregated consumption patterns of the individuals.