Biblio
Early detection of conflict potentials around the community is vital for the Central Java Regional Police Department, especially in the Analyst section of the Directorate of Security Intelligence. Performance in carrying out early detection will affect the peace and security of the community. The performance of potential conflict detection activities can be improved using an integrated early detection information system by shortening the time after observation, report preparation, information processing, and analysis. Developed using Unified Process as a software life cycle, the obtained result shows the time-based performance variables of the officers are significantly improved, including observation time, report production, data finding, and document formatting.
The development of technologies makes it possible to increase the power of information processing systems, but the modernization of processors brings not only an increase in performance but also an increase in the number of errors and vulnerabilities that can allow an attacker to attack the system and gain access to confidential information. White-Box cryptography allows (due to its structure) not only monitoring possible changes but also protects the processed data even with full access of the attacker to the environment. Elliptic Curve Cryptography (ECC) due to its properties, is becoming stronger and stronger in our lives, as it allows you to get strong encryption at a lower cost of processing your own algorithm. This allows you to reduce the load on the system and increase its performance.
With the widespread application of distributed information processing, information processing security issues have become one of the important research topics; CAPTCHA technology is often used as the first security barrier for distributed information processing and it prevents the client malicious programs to attack the server. The experiment proves that the existing “request / response” mode of CAPTCHA has great security risks. “The text-based CAPTCHA solution without network flow consumption” proposed in this paper avoids the “request / response” mode and the verification logic of the text-based CAPTCHA is migrated to the client in this solution, which fundamentally cuts off the client's attack facing to the server during the verification of the CAPTCHA and it is a high-security text-based CAPTCHA solution without network flow consumption.
The paper presents a conceptual framework for security embedded task offloading requirements for IoT-Fog based future communication networks. The focus of the paper is to enumerate the need of embedded security requirements in this IoT-Fog paradigm including the middleware technologies in the overall architecture. Task offloading plays a significant role in the load balancing, energy and data management, security, reducing information processing and propagation latencies. The motivation behind introducing the embedded security is to meet the challenges of future smart networks including two main reasons namely; to improve the data protection and to minimize the internet disturbance and intrusiveness. We further discuss the middleware technologies such as cloudlets, mobile edge computing, micro datacenters, self-healing infrastructures and delay tolerant networks for security provision, optimized energy consumption and to reduce the latency. The paper introduces concepts of system virtualization and parallelism in IoT-Fog based systems and highlight the security features of the system. Some research opportunities and challenges are discussed to improve secure offloading from IoT into fog.