Biblio
This paper sheds light on the collaborative efforts in restoring cyber and physical subsystems of a modern power distribution system after the occurrence of an extreme weather event. The extensive cyber-physical interdependencies in the operation of power distribution systems are first introduced for investigating the functionality loss of each subsystem when the dependent subsystem suffers disruptions. A resilience index is then proposed for measuring the effectiveness of restoration activities in terms of restoration rapidity. After modeling operators' decision making for economic dispatch as a second-order cone programming problem, this paper proposes a heuristic approach for prioritizing the activities for restoring both cyber and physical subsystems. In particular, the proposed heuristic approach takes into consideration of cyber-physical interdependencies for improving the operation performance. Case studies are also conducted to validate the collaborative restoration model in the 33-bus power distribution system.
Concurrency vulnerabilities are extremely harmful and can be frequently exploited to launch severe attacks. Due to the non-determinism of multithreaded executions, it is very difficult to detect them. Recently, data race detectors and techniques based on maximal casual model have been applied to detect concurrency vulnerabilities. However, the former are ineffective and the latter report many false negatives. In this paper, we present CONVUL, an effective tool for concurrency vulnerability detection. CONVUL is based on exchangeable events, and adopts novel algorithms to detect three major kinds of concurrency vulnerabilities. In our experiments, CONVUL detected 9 of 10 known vulnerabilities, while other tools only detected at most 2 out of these 10 vulnerabilities. The 10 vulnerabilities are available at https://github.com/mryancai/ConVul.
Realizing the importance of the concept of “smart city” and its impact on the quality of life, many infrastructures, such as power plants, began their digital transformation process by leveraging modern computing and advanced communication technologies. Unfortunately, by increasing the number of connections, power plants become more and more vulnerable and also an attractive target for cyber-physical attacks. The analysis of interdependencies among system components reveals interdependent connections, and facilitates the identification of those among them that are in need of special protection. In this paper, we review the recent literature which utilizes graph-based models and network-based models to study these interdependencies. A comprehensive overview, based on the main features of the systems including communication direction, control parameters, research target, scalability, security and safety, is presented. We also assess the computational complexity associated with the approaches presented in the reviewed papers, and we use this metric to assess the scalability of the approaches.
In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.
In order to improve the accuracy of similarity, an improved collaborative filtering algorithm based on trust and information entropy is proposed in this paper. Firstly, the direct trust between the users is determined by the user's rating to explore the potential trust relationship of the users. The time decay function is introduced to realize the dynamic portrayal of the user's interest decays over time. Secondly, the direct trust and the indirect trust are combined to obtain the overall trust which is weighted with the Pearson similarity to obtain the trust similarity. Then, the information entropy theory is introduced to calculate the similarity based on weighted information entropy. At last, the trust similarity and the similarity based on weighted information entropy are weighted to obtain the similarity combing trust and information entropy which is used to predicted the rating of the target user and create the recommendation. The simulation shows that the improved algorithm has a higher accuracy of recommendation and can provide more accurate and reliable recommendation service.
In this paper, we propose a compositional scheme for the construction of abstractions for networks of control systems by using the interconnection matrix and joint dissipativity-type properties of subsystems and their abstractions. In the proposed framework, the abstraction, itself a control system (possibly with a lower dimension), can be used as a substitution of the original system in the controller design process. Moreover, we provide a procedure for constructing abstractions of a class of nonlinear control systems by using the bounds on the slope of system nonlinearities. We illustrate the proposed results on a network of linear control systems by constructing its abstraction in a compositional way without requiring any condition on the number or gains of the subsystems. We use the abstraction as a substitute to synthesize a controller enforcing a certain linear temporal logic specification. This example particularly elucidates the effectiveness of dissipativity-type compositional reasoning for large-scale systems.
We consider a compositional construction of approximate abstractions of interconnected control systems. In our framework, an abstraction acts as a substitute in the controller design process and is itself a continuous control system. The abstraction is related to the concrete control system via a so-called simulation function: a Lyapunov-like function, which is used to establish a quantitative bound between the behavior of the approximate abstraction and the concrete system. In the first part of the paper, we provide a small gain type condition that facilitates the compositional construction of an abstraction of an interconnected control system together with a simulation function from the abstractions and simulation functions of the individual subsystems. In the second part of the paper, we restrict our attention to linear control system and characterize simulation functions in terms of controlled invariant, externally stabilizable subspaces. Based on those characterizations, we propose a particular scheme to construct abstractions for linear control systems. We illustrate the compositional construction of an abstraction on an interconnected system consisting of four linear subsystems. We use the abstraction as a substitute to synthesize a controller to enforce a certain linear temporal logic specification.
Cyber Physical Systems (CPS)-Internet of Things (IoT) enabled healthcare services and infrastructures improve human life, but are vulnerable to a variety of emerging cyber-attacks. Cybersecurity specialists are finding it hard to keep pace of the increasingly sophisticated attack methods. There is a critical need for innovative cognitive cybersecurity for CPS-IoT enabled healthcare ecosystem. This paper presents a cognitive cybersecurity framework for simulating the human cognitive behaviour to anticipate and respond to new and emerging cybersecurity and privacy threats to CPS-IoT and critical infrastructure systems. It includes the conceptualisation and description of a layered architecture which combines Artificial Intelligence, cognitive methods and innovative security mechanisms.
This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.