Visible to the public Biblio

Found 1408 results

Filters: First Letter Of Title is C  [Clear All Filters]
2020-11-09
Ankam, D., Bouguila, N..  2018.  Compositional Data Analysis with PLS-DA and Security Applications. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :338–345.
In Compositional data, the relative proportions of the components contain important relevant information. In such case, Euclidian distance fails to capture variation when considered within data science models and approaches such as partial least squares discriminant analysis (PLS-DA). Indeed, the Euclidean distance assumes implicitly that the data is normally distributed which is not the case of compositional vectors. Aitchison transformation has been considered as a standard in compositional data analysis. In this paper, we consider two other transformation methods, Isometric log ratio (ILR) transformation and data-based power (alpha) transformation, before feeding the data to PLS-DA algorithm for classification [1]. In order to investigate the merits of both methods, we apply them in two challenging information system security applications namely spam filtering and intrusion detection.
2020-11-04
[Anonymous].  2018.  Cloud-based Labs and Programming Assignments in Networking and Cybersecurity Courses. 2018 IEEE Frontiers in Education Conference (FIE). :1—9.

This is a full paper for innovate practice. Building a private cloud or using a public cloud is now feasible at many institutions. This paper presents the innovative design of cloudbased labs and programming assignments for a networking course and a cybersecurity course, and our experiences of innovatively using the private cloud at our institution to support these learning activities. It is shown by the instructor's observations and student survey data that our approach benefits learning and teaching. This approach makes it possible and secure to develop some learning activities that otherwise would not be allowed on physical servers. It enables the instructor to support students' desire of developing programs in their preferred programming languages. It allows students to debug and test their programs on the same platform to be used by the instructor for testing and grading. The instructor does not need to spend extra time administrating the computing environments. A majority (88% or more) of the students agree that working on those learning activities in the private cloud not only helps them achieve the course learning objectives, but also prepares them for their future careers.

Ngambeki, I., Nico, P., Dai, J., Bishop, M..  2018.  Concept Inventories in Cybersecurity Education: An Example from Secure Programming. 2018 IEEE Frontiers in Education Conference (FIE). :1—5.

This Innovative Practice Work in Progress paper makes the case for using concept inventories in cybersecurity education and presents an example of the development of a concept inventory in the field of secure programming. The secure programming concept inventory is being developed by a team of researchers from four universities. We used a Delphi study to define the content area to be covered by the concept inventory. Participants in the Delphi study included ten experts from academia, government, and industry. Based on the results, we constructed a concept map of secure programming concepts. We then compared this concept map to the Joint Task Force on Cybersecurity Education Curriculum 2017 guidelines to ensure complete coverage of secure programming concepts. Our mapping indicates a substantial match between the concept map and those guidelines.

Rajamäki, J., Nevmerzhitskaya, J., Virág, C..  2018.  Cybersecurity education and training in hospitals: Proactive resilience educational framework (Prosilience EF). 2018 IEEE Global Engineering Education Conference (EDUCON). :2042—2046.

Healthcare is a vital component of every nation's critical infrastructure, yet it is one of the most vulnerable sector for cyber-attacks. To enforce the knowledge on information security processes and data protection procedures, educational and training schemes should be establishedfor information technology (IT) staff working in healthcare settings. However, only training IT staff is not enough, as many of cybersecurity threats are caused by human errors or lack of awareness. Current awareness and training schemes are often implemented in silos, concentrating on one aspect of cybersecurity at a time. Proactive Resilience Educational Framework (Prosilience EF) provides a holistic cyber resilience and security framework for developing and delivering a multilateral educational and training scheme based on a proactive approach to cybersecurity. The framework is built on the principle that education and training must be interactive, guided, meaningful and directly relevant to the user' operational environment. The framework addresses capacity mapping, cyber resilience level measuring, utilizing available and mapping missing resources, adaptive learning technologies and dynamic content delivery. Prosilience EF launches an iterative process of awareness and training development with relevant stakeholders (end users - hospitals, healthcare authorities, cybersecurity training providers, industry members), evaluating the framework via joint exercises/workshops andfurther developing the framework.

Wu, X., Chen, Y., Li, S..  2018.  Contactless Smart Card Experiments in a Cybersecurity Course. 2018 IEEE Frontiers in Education Conference (FIE). :1—4.

This Innovate Practice Work in Progress paper is about education on Cybersecurity, which is essential in training of innovative talents in the era of the Internet. Besides knowledge and skills, it is important as well to enhance the students' awareness of cybersecurity in daily life. Considering that contactless smart cards are common and widely used in various areas, one basic and two advanced contactless smart card experiments were designed innovatively and assigned to junior students in 3-people groups in an introductory cybersecurity summer course. The experimental principles, facilities, contents and arrangement are introduced successively. Classroom tests were managed before and after the experiments, and a box and whisker plot is used to describe the distributions of the scores in both tests. The experimental output and student feedback implied the learning objectives were achieved through the problem-based, active and group learning experience during the experiments.

Stange, M., Tang, C., Tucker, C., Servine, C., Geissler, M..  2019.  Cybersecurity Associate Degree Program Curriculum. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—5.

The spotlight is on cybersecurity education programs to develop a qualified cybersecurity workforce to meet the demand of the professional field. The ACM CCECC (Committee for Computing Education in Community Colleges) is leading the creation of a set of guidelines for associate degree cybersecurity programs called Cyber2yr, formerly known as CSEC2Y. A task force of community college educators have created a student competency focused curriculum that will serve as a global cybersecurity guide for applied (AAS) and transfer (AS) degree programs to develop a knowledgeable and capable associate level cybersecurity workforce. Based on the importance of the Cyber2yr work; ABET a nonprofit, non-governmental agency that accredits computing programs has created accreditation criteria for two-year cybersecurity programs.

Thomas, L. J., Balders, M., Countney, Z., Zhong, C., Yao, J., Xu, C..  2019.  Cybersecurity Education: From Beginners to Advanced Players in Cybersecurity Competitions. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :149—151.

Cybersecurity competitions have been shown to be an effective approach for promoting student engagement through active learning in cybersecurity. Players can gain hands-on experience in puzzle-based or capture-the-flag type tasks that promote learning. However, novice players with limited prior knowledge in cybersecurity usually found difficult to have a clue to solve a problem and get frustrated at the early stage. To enhance student engagement, it is important to study the experiences of novices to better understand their learning needs. To achieve this goal, we conducted a 4-month longitudinal case study which involves 11 undergraduate students participating in a college-level cybersecurity competition, National Cyber League (NCL) competition. The competition includes two individual games and one team game. Questionnaires and in-person interviews were conducted before and after each game to collect the players' feedback on their experience, learning challenges and needs, and information about their motivation, interests and confidence level. The collected data demonstrate that the primary concern going into these competitions stemmed from a lack of knowledge regarding cybersecurity concepts and tools. Players' interests and confidence can be increased by going through systematic training.

Sultana, K. Z., Williams, B. J., Bosu, A..  2018.  A Comparison of Nano-Patterns vs. Software Metrics in Vulnerability Prediction. 2018 25th Asia-Pacific Software Engineering Conference (APSEC). :355—364.

Context: Software security is an imperative aspect of software quality. Early detection of vulnerable code during development can better ensure the security of the codebase and minimize testing efforts. Although traditional software metrics are used for early detection of vulnerabilities, they do not clearly address the granularity level of the issue to precisely pinpoint vulnerabilities. The goal of this study is to employ method-level traceable patterns (nano-patterns) in vulnerability prediction and empirically compare their performance with traditional software metrics. The concept of nano-patterns is similar to design patterns, but these constructs can be automatically recognized and extracted from source code. If nano-patterns can better predict vulnerable methods compared to software metrics, they can be used in developing vulnerability prediction models with better accuracy. Aims: This study explores the performance of method-level patterns in vulnerability prediction. We also compare them with method-level software metrics. Method: We studied vulnerabilities reported for two major releases of Apache Tomcat (6 and 7), Apache CXF, and two stand-alone Java web applications. We used three machine learning techniques to predict vulnerabilities using nano-patterns as features. We applied the same techniques using method-level software metrics as features and compared their performance with nano-patterns. Results: We found that nano-patterns show lower false negative rates for classifying vulnerable methods (for Tomcat 6, 21% vs 34.7%) and therefore, have higher recall in predicting vulnerable code than the software metrics used. On the other hand, software metrics show higher precision than nano-patterns (79.4% vs 76.6%). Conclusion: In summary, we suggest developers use nano-patterns as features for vulnerability prediction to augment existing approaches as these code constructs outperform standard metrics in terms of prediction recall.

Torkura, K. A., Sukmana, M. I. H., Strauss, T., Graupner, H., Cheng, F., Meinel, C..  2018.  CSBAuditor: Proactive Security Risk Analysis for Cloud Storage Broker Systems. 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). :1—10.

Cloud Storage Brokers (CSB) provide seamless and concurrent access to multiple Cloud Storage Services (CSS) while abstracting cloud complexities from end-users. However, this multi-cloud strategy faces several security challenges including enlarged attack surfaces, malicious insider threats, security complexities due to integration of disparate components and API interoperability issues. Novel security approaches are imperative to tackle these security issues. Therefore, this paper proposes CS-BAuditor, a novel cloud security system that continuously audits CSB resources, to detect malicious activities and unauthorized changes e.g. bucket policy misconfigurations, and remediates these anomalies. The cloud state is maintained via a continuous snapshotting mechanism thereby ensuring fault tolerance. We adopt the principles of chaos engineering by integrating BrokerMonkey, a component that continuously injects failure into our reference CSB system, CloudRAID. Hence, CSBAuditor is continuously tested for efficiency i.e. its ability to detect the changes injected by BrokerMonkey. CSBAuditor employs security metrics for risk analysis by computing severity scores for detected vulnerabilities using the Common Configuration Scoring System, thereby overcoming the limitation of insufficient security metrics in existing cloud auditing schemes. CSBAuditor has been tested using various strategies including chaos engineering failure injection strategies. Our experimental evaluation validates the efficiency of our approach against the aforementioned security issues with a detection and recovery rate of over 96 %.

2020-11-02
Ma, Y., Bai, X..  2019.  Comparison of Location Privacy Protection Schemes in VANETs. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:79–83.
Vehicular Ad-hoc Networks (VANETs) is a traditional mobile ad hoc network (MANET) used on traffic roads and it is a special mobile ad hoc network. As an intelligent transportation system, VANETs can solve driving safety and provide value-added services. Therefore, the application of VANETs can improve the safety and efficiency of road traffic. Location services are in a crucial position for the development of VANETs. VANETs has the characteristics of open access and wireless communication. Malicious node attacks may lead to the leakage of user privacy in VANETs, thus seriously affecting the use of VANETs. Therefore, the location privacy issue of VANETs cannot be ignored. This paper classifies the attack methods in VANETs, and summarizes and compares the location privacy protection techniques proposed in the existing research.
Zhong, J., Yang, C..  2019.  A Compositionality Assembled Model for Learning and Recognizing Emotion from Bodily Expression. 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM). :821–826.
When we are express our internal status, such as emotions, the human body expression we use follows the compositionality principle. It is a theory in linguistic which proposes that the single components of the bodily presentation as well as the rules used to combine them are the major parts to finish this process. In this paper, such principle is applied to the process of expressing and recognizing emotional states through body expression, in which certain key features can be learned to represent certain primitives of the internal emotional state in the form of basic variables. This is done by a hierarchical recurrent neural learning framework (RNN) because of its nonlinear dynamic bifurcation, so that variables can be learned to represent different hierarchies. In addition, we applied some adaptive learning techniques in machine learning for the requirement of real-time emotion recognition, in which a stable representation can be maintained compared to previous work. The model is examined by comparing the PB values between the training and recognition phases. This hierarchical model shows the rationality of the compositionality hypothesis by the RNN learning and explains how key features can be used and combined in bodily expression to show the emotional state.
Lin, Chun-Yu, Huang, Juinn-Dar, Yao, Hailong, Ho, Tsung-Yi.  2018.  A Comprehensive Security System for Digital Microfluidic Biochips. 2018 IEEE International Test Conference in Asia (ITC-Asia). :151—156.

Digital microfluidic biochips (DMFBs) have become popular in the healthcare industry recently because of its lowcost, high-throughput, and portability. Users can execute the experiments on biochips with high resolution, and the biochips market therefore grows significantly. However, malicious attackers exploit Intellectual Property (IP) piracy and Trojan attacks to gain illegal profits. The conventional approaches present defense mechanisms that target either IP piracy or Trojan attacks. In practical, DMFBs may suffer from the threat of being attacked by these two attacks at the same time. This paper presents a comprehensive security system to protect DMFBs from IP piracy and Trojan attacks. We propose an authentication mechanism to protect IP and detect errors caused by Trojans with CCD cameras. By our security system, we could generate secret keys for authentication and determine whether the bioassay is under the IP piracy and Trojan attacks. Experimental results demonstrate the efficacy of our security system without overhead of the bioassay completion time.

Shanmugam, Dillibabu, Annadurai, Suganya.  2018.  Crypto Primitives IPCore Implementation Susceptibility in Cyber Physical System. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :255—260.
Security evaluation of third-party cryptographic Soft/Hard IP (Intellectual Property) core is often ignored due to several reasons including, lack of awareness about its adversity, lack of knowledge about validation methodology or considering security as a byproduct. Particularly, the security validation of bought-out Hardware IP core is important before being deployed in particle means. In this paper, we present Look-Up-Table (LUT) based unrolled implementation of low latency cipher, PRINCE as an hard IP core and show how the susceptible implementation (nested and flexible placement of IP cores) can be experimentally exploited to reveal secret key in FPGA using power analysis attack. Such vulnerability in constrained devices, Internet-of-Things(IoT), causes serious threats in cyber physical system.
Zhang, Yuan, Xu, Chunxiang, Li, Hongwei, Yang, Haomiao, Shen, Xuemin.  2019.  Chronos: Secure and Accurate Time-Stamping Scheme for Digital Files via Blockchain. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.

It is common to certify when a file was created in digital investigations, e.g., determining first inventors for patentable ideas in intellectual property systems to resolve disputes. Secure time-stamping schemes can be derived from blockchain-based storage to protect files from backdating/forward-dating, where a file is integrated into a transaction on a blockchain and the timestamp of the corresponding block reflects the latest time the file was created. Nevertheless, blocks' timestamps in blockchains suffer from time errors, which causes the inaccuracy of files' timestamps. In this paper, we propose an accurate blockchain-based time-stamping scheme called Chronos. In Chronos, when a file is created, the file and a sufficient number of successive blocks that are latest confirmed on blockchain are integrated into a transaction. Due to chain quality, it is computationally infeasible to pre-compute these blocks. The time when the last block was chained to the blockchain serves as the earliest creation time of the file. The time when the block including the transaction was chained indicates the latest creation time of the file. Therefore, Chronos makes the file's creation time corresponding to this time interval. Based on chain growth, Chronos derives the time when these two blocks were chained from their heights on the blockchain, which ensures the accuracy of the file's timestamp. The security and performance of Chronos are demonstrated by a comprehensive evaluation.

Saksupapchon, Punyapat, Willoughby, Kelvin W..  2019.  Contextual Factors Affecting Decisions About Intellectual Property Licensing Provisions in Collaboration Agreements for Open Innovation Projects of Complex Technological Organizations. 2019 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE). :1—2.

Firms collaborate with partners in research and development (R&D) of new technologies for many reasons such as to access complementary knowledge, know-how or skills, to seek new opportunities outside their traditional technology domain, to sustain their continuous flows of innovation, to reduce time to market, or to share risks and costs [1]. The adoption of collaborative research agreements (CRAs) or collaboration agreements (CAs) is rising rapidly as firms attempt to access innovation from various types of organizations to enhance their traditional in-house innovation [2], [3]. To achieve the objectives of their collaborations, firms need to share knowledge and jointly develop new knowledge. As more firms adopt open collaborative innovation strategies, intellectual property (IP) management has inevitably become important because clear and fair contractual IP terms and conditions such as IP ownership allocation, licensing arrangements and compensation for IP access are required for each collaborative project [4], [5]. Moreover, the firms need to adjust their IP management strategies to fit the unique characteristics and circumstances of each particular project [5].

Fraiji, Yosra, Ben Azzouz, Lamia, Trojet, Wassim, Saidane, Leila Azouz.  2018.  Cyber security issues of Internet of electric vehicles. 2018 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.

The use of Electric Vehicle (EV) is growing rapidly due to its environmental benefits. However, the major problem of these vehicles is their limited battery, the lack of charging stations and the re-charge time. Introducing Information and Communication Technologies, in the field of EV, will improve energy efficiency, energy consumption predictions, availability of charging stations, etc. The Internet of Vehicles based only on Electric Vehicles (IoEV) is a complex system. It is composed of vehicles, humans, sensors, road infrastructure and charging stations. All these entities communicate using several communication technologies (ZigBee, 802.11p, cellular networks, etc). IoEV is therefore vulnerable to significant attacks such as DoS, false data injection, modification. Hence, security is a crucial factor for the development and the wide deployment of Internet of Electric Vehicles (IoEV). In this paper, we present an overview of security issues of the IoEV architecture and we highlight open issues that make the IoEV security a challenging research area in the future.

Singh, Dhananjay, Tripathi, Gaurav, Shah, Sayed Chhattan, da Rosa Righi, Rodrigo.  2018.  Cyber physical surveillance system for Internet of Vehicles. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :546—551.

Internet of Vehicle (IoV) is an essential part of the Intelligent Transportation system (ITS) which is growing exponentially in the automotive industry domain. The term IoV is used in this paper for Internet of Vehicles. IoV is conceptualized for sharing traffic, safety and several other vehicle-related information between vehicles and end user. In recent years, the number of connected vehicles has increased allover the world. Having information sharing and connectivity as its advantage, IoV also faces the challenging task in the cybersecurity-related matters. The future consists of crowded places in an interconnected world through wearable's, sensors, smart phones etc. We are converging towards IoV technology and interactions with crowded space of connected peoples. However, this convergence demands high-security mechanism from the connected crowd as-well-as other connected vehicles to safeguard of proposed IoV system. In this paper, we coin the term of smart people crowd (SPC) and the smart vehicular crowd (SVC) for the Internet of Vehicles (IoV). These specific crowds of SPC and SVC are the potential cyber attackers of the smart IoV. People connected to the internet in the crowded place are known as a smart crowd. They have interfacing devices with sensors and the environment. A smart crowd would also consist of the random number of smart vehicles. With the future converging in to the smart connected framework for crowds, vehicles and connected vehicles, we present a novel cyber-physical surveillance system (CPSS) framework to tackle the security threats in the crowded environment for the smart automotive industry and provide the cyber security mechanism in the crowded places. We also describe an overview of use cases and their security challenges on the Internet of Vehicles.

Ivanov, I, Maple, C, Watson, T, Lee, S.  2018.  Cyber security standards and issues in V2X communications for Internet of Vehicles. Living in the Internet of Things: Cybersecurity of the IoT – 2018. :1—6.

Significant developments have taken place over the past few years in the area of vehicular communication systems in the ITS environment. It is vital that, in these environments, security is considered in design and implementation since compromised vulnerabilities in one vehicle can be propagated to other vehicles, especially given that V2X communication is through an ad-hoc type network. Recently, many standardisation organisations have been working on creating international standards related to vehicular communication security and the so-called Internet of Vehicles (IoV). This paper presents a discussion of current V2X communications cyber security issues and standardisation approaches being considered by standardisation bodies such as the ISO, the ITU, the IEEE, and the ETSI.

Wu, Yuming, Liu, Yutao, Liu, Ruifeng, Chen, Haibo, Zang, Binyu, Guan, Haibing.  2018.  Comprehensive VM Protection Against Untrusted Hypervisor Through Retrofitted AMD Memory Encryption. 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA).

The confidentiality of tenant's data is confronted with high risk when facing hardware attacks and privileged malicious software. Hardware-based memory encryption is one of the promising means to provide strong guarantees of data security. Recently AMD has proposed its new memory encryption hardware called SME and SEV, which can selectively encrypt memory regions in a fine-grained manner, e.g., by setting the C-bits in the page table entries. More importantly, SEV further supports encrypted virtual machines. This, intuitively, has provided a new opportunity to protect data confidentiality in guest VMs against an untrusted hypervisor in the cloud environment. In this paper, we first provide a security analysis on the (in)security of SEV and uncover a set of security issues of using SEV as a means to defend against an untrusted hypervisor. Based on the study, we then propose a software-based extension to the SEV feature, namely Fidelius, to address those issues while retaining performance efficiency. Fidelius separates the management of critical resources from service provisioning and revokes the permissions of accessing specific resources from the un-trusted hypervisor. By adopting a sibling-based protection mechanism with non-bypassable memory isolation, Fidelius embraces both security and efficiency, as it introduces no new layer of abstraction. Meanwhile, Fidelius reuses the SEV API to provide a full VM life-cycle protection, including two sets of para-virtualized I/O interfaces to encode the I/O data, which is not considered in the SEV hardware design. A detailed and quantitative security analysis shows its effectiveness in protecting tenant's data from a variety of attack surfaces, and the performance evaluation confirms the performance efficiency of Fidelius.

2020-10-29
Priyamvada Davuluru, Venkata Salini, Narayanan Narayanan, Barath, Balster, Eric J..  2019.  Convolutional Neural Networks as Classification Tools and Feature Extractors for Distinguishing Malware Programs. 2019 IEEE National Aerospace and Electronics Conference (NAECON). :273—278.

Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.

2020-10-26
DaSilva, Gianni, Loud, Vincent, Salazar, Ana, Soto, Jeff, Elleithy, Abdelrahman.  2019.  Context-Oriented Privacy Protection in Wireless Sensor Networks. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–4.
As more devices become connected to the internet and new technologies emerge to connect them, security must keep up to protect data during transmission and at rest. Several instances of security breaches have forced many companies to investigate the effectiveness of their security measures. In this paper, we discuss different methodologies for protecting data as it relates to wireless sensor networks (WSNs). Data collected from these sensors range in type from location data of an individual to surveillance for military applications. We propose a solution that protects the location of the base station and the nodes while transmitting data.
2020-10-19
Hasan, Khondokar Fida, Kaur, Tarandeep, Hasan, Md. Mhedi, Feng, Yanming.  2019.  Cognitive Internet of Vehicles: Motivation, Layered Architecture and Security Issues. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). :1–6.
Over the past few years, we have experienced great technological advancements in the information and communication field, which has significantly contributed to reshaping the Intelligent Transportation System (ITS) concept. Evolving from the platform of a collection of sensors aiming to collect data, the data exchanged paradigm among vehicles is shifted from the local network to the cloud. With the introduction of cloud and edge computing along with ubiquitous 5G mobile network, it is expected to see the role of Artificial Intelligence (AI) in data processing and smart decision imminent. So as to fully understand the future automobile scenario in this verge of industrial revolution 4.0, it is necessary first of all to get a clear understanding of the cutting-edge technologies that going to take place in the automotive ecosystem so that the cyber-physical impact on transportation system can be measured. CIoV, which is abbreviated from Cognitive Internet of Vehicle, is one of the recently proposed architectures of the technological evolution in transportation, and it has amassed great attention. It introduces cloud-based artificial intelligence and machine learning into transportation system. What are the future expectations of CIoV? To fully contemplate this architecture's future potentials, and milestones set to achieve, it is crucial to understand all the technologies that leaned into it. Also, the security issues to meet the security requirements of its practical implementation. Aiming to that, this paper presents the evolution of CIoV along with the layer abstractions to outline the distinctive functional parts of the proposed architecture. It also gives an investigation of the prime security and privacy issues associated with technological evolution to take measures.
Dong, Hongbo, Zhu, Qianxiang.  2019.  A Cyber-Physical Interaction Model Based Impact Assessment of Cyberattacks for Internet of Vehicles. 2019 4th International Conference on Communication and Information Systems (ICCIS). :79–83.
Internet of Vehicles are the important part of Intelligence Traffic Systems (ITS), which are essential for the national security and economy development. The impact assessment for cyberattacks in the IoV protection is of great theoretical and practical significance. Most of the researchers in this field pay attention on the attack impact on a vehicle, and the seldom investigate the impact on the whole system which combines all the vehicles as a whole integration. To tackle this problem, a cyber-physical interaction model based impact assessment of cyberattacks is presented. In this approach, the operation of IoV is modeled from the cyberphysical interaction perspective, and then the propagating process from cyber layer to physical layer is investigated. Based on above model, the impact assessment of cyberattacks on IoV is realized quantitatively. Finally, a simulation on an IoV is conducted to verify the effectiveness of this approach.
Aladwan, Mohammad, Awaysheh, Feras, Cabaleiro, José, Pena, Tomás, Alabool, Hamzeh, Alazab, Mamoun.  2019.  Common Security Criteria for Vehicular Clouds and Internet of Vehicles Evaluation and Selection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :814–820.
Internet of Things (IoT) is becoming increasingly important to intelligent transportation system stakeholders, including cloud-based vehicular cloud (VC) and internet of vehicles (IoV) paradigms. This new trend involves communication and data exchange between several objects within different layers of control. Security in such a deployment is pivotal to realize the general IoT-based smart city. However, the evaluation of the degree of security regarding these paradigms remains a challenge. This study aims to discover and identify common security criteria (CSC) from a context-based analysis pattern and later to discuss, compare, and aggregate a conceptual model of CSC impartially. A privacy granularity classification that maintains data confidentiality is proposed alongside the security selection criteria.
2020-10-16
AlEnezi, Ali, AlMeraj, Zainab, Manuel, Paul.  2018.  Challenges of IoT Based Smart-Government Development. 2018 IEEE Green Technologies Conference (GreenTech). :155—160.

Smart governments are known as extensions of e-governments both built on the Internet of Things (IoT). In this paper, we classify smart governments into two types (1) new generation and (2) extended smart-government. We then put forth a framework for smart governments implementation and discuss the major challenges in its implementation showing security as the most prominent challenge in USA, mindscaping in Kuwait and investment in India.