Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2022-05-06
Lokhande, Trupti, Sonekar, Shrikant, Wani, Aachal.  2021.  Development of an Algorithmic Approach for Hiding Sensitive Data and Recovery of Data based on Fingerprint Identification for Secure Cloud Storage. 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). :800–805.
Information Security is a unified piece of information technology that has emerged as vibrant technology in the last two decades. To manage security, authentication assumes a significant part. Biometric is the physical unique identification as well as authentication for the third party. We have proposed the security model for preventing many attacks so we are used the innermost layer as a 3DES (Triple Encryption standard) cryptography algorithm that is providing 3- key protection as 64-bit and the outermost layer used the MD5 (Message Digest) algorithm. i. e. providing 128-bit protection as well as we is using fingerprint identification as physical security that is used in third-party remote integrity auditing. Remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depending on identity-based cryptography, which works on the convoluted testament of the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Wani, Aachal, Sonekar, Shrikant, Lokhande, Trupti.  2021.  Design and Development of Collaborative Approach for Integrity Auditing and Data Recovery based on Fingerprint Identification for Secure Cloud Storage. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–6.
In a Leading field of Information Technology moreover make information Security a unified piece of it. To manage security, Authentication assumes a significant part. Biometric is the physical unique identification as well as Authentication for third party. We are proposed the Security model for preventing many attacks so we are used Inner most layer as a 3DES (Triple Encryption standard) Cryptography algorithm that is providing 3-key protection as 64-bit And the outer most layer used the MD5 (Message Digest) Algorithm. i. e. Providing 128 – bit protection. As well as we are using Fingerprint Identification as a physical Security that used in third party remote integrity auditing, and remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depends on identity-based cryptography, which works on the convoluted testament the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Akumalla, Harichandana, Hegde, Ganapathi.  2021.  Deoxyribonucleic Acid Based Nonce-Misuse-Resistant Authenticated Encryption Algorithm. 2021 5th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
This paper aims to present a performance comparison of new authenticated encryption (AE) algorithm with the objective of high network security and better efficiency as compared to the defacto standard. This algorithm is based on a critical property of nonce-misuse-resistance incorporating DNA computation for securing the key, here the processing unit of DNA block converts the input key into its equivalent DNA base formats based on the ASCII code table. The need for secure exchange of keys through a public channel has become inevitable and thus, the proposed architecture will enhance the secrecy by using DNA cryptography. These implementations consider Advanced Encryption Standard in Galois Counter mode (AES-GCM) as a standard for comparison.
Kumar, Anuj.  2021.  Data Security and Privacy using DNA Cryptography and AES Method in Cloud Computing. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1529—1535.
Cloud computing has changed how humans use their technological expertise. It indicates a transition in the use of computers as utilitarian instruments with radical applications in general. However, as technology advances, the number of hazards increases and crucial data protection has become increasingly challenging due to extensive internet use. Every day, new encryption methods are developed, and much research is carried out in the search for a reliable cryptographic algorithm. The AES algorithm employs an overly simplistic algebraic structure. Each block employs the same encryption scheme, and AES is subject to brute force and MITM attacks. AES have not provide d sufficient levels of security; the re is still a need to put further le vels of protection over them. In this regard, DNA cryptography allows you to encrypt a large quantity of data using only a few amount of DNA. This paper combines two methodologies, a DNA-based algorithm and the AES Algorithm, to provide a consi derably more secure data security platform. The DNA cryptography technology and the AES approach are utilized for data encryption and decryption. To improve cloud security, DNA cryptography and AES provide a technologically ideal option.
2022-05-05
Genç, Yasin, Afacan, Erkan.  2021.  Design and Implementation of an Efficient Elliptic Curve Digital Signature Algorithm (ECDSA). 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—6.
Digital signatures are increasingly used today. It replaces wet signature with the development of technology. Elliptic curve digital signature algorithm (ECDSA) is used in many applications thanks to its security and efficiency. However, some mathematical operations such as inversion operation in modulation slow down the speed of this algorithm. In this study, we propose a more efficient and secure ECDSA. In the proposed method, the inversion operation in modulation of signature generation and signature verification phases is removed. Thus, the efficiency and speed of the ECDSA have been increased without reducing its security. The proposed method is implemented in Python programming language using P-521 elliptic curve and SHA-512 algorithm.
Srinadh, V, Maram, Balajee, Daniya, T..  2021.  Data Security And Recovery Approach Using Elliptic Curve Cryptography. 2021 IEEE International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). :1—6.
The transmission of various facilities and services via the network is known as cloud computing. They involve data storage, data centers, networks, internet, and software applications, among other systems and features. Cryptography is a technique in which plain text is converted into cipher-text to preserve information security. It basically consists of encryption and decryption. The level of safety is determined by the category of encryption and decryption technique employed. The key plays an important part in the encryption method. If the key is leaked, anyone can intrude into the data and there is no use of this encryption. When the data is lost and the server fails to deliver it to the user, then it is to be recovered from any of the backup server using a recovery technique. The main objective is to develop an advanced method to increase the scope for data protection in cloud. Elliptic Curve Cryptography is a relatively new approach in the area of cryptography. The degree of security provides higher as compared to other Cryptographic techniques. The raw data and it’s accompanying as CII characters are combined and sent into the Elliptic Curve Cryptography as a source. This method eliminates the need for the transmitter and recipient to have a similar search database. Finally, a plain text is converted into cipher-text using Elliptic Curve Cryptography. The results are oat aimed by implementing a C program for Elliptic Curve Cryptography. Encryption, decryption and recovery using suitable algorithms are done.
Saju, Nikita Susan, K. N., Sreehari.  2021.  Design and Execution of Highly Adaptable Elliptic Curve Cryptographic Processor and Algorithm on FPGA using Verilog HDL. 2021 International Conference on Communication, Control and Information Sciences (ICCISc). 1:1—6.
Cryptography is the science or process used for the encryption and decryption of data that helps the users to store important information or share it across networks where it can be read only by the intended user. In this paper, Elliptic Curve Cryptography (ECC) has been proposed because of its small key size, less memory space and high speed. Elliptic curve scalar multiplication is an important part of elliptic curve systems. Here, the scalar multiplication is performed with the help of hybrid Karatsuba multiplier as the area utilization of Karatsuba multiplier is less. An alternative of digital signature algorithm, that is, Elliptic Curve Digital Signature Algorithm (ECDSA) along with the primary operations of elliptic curves have also been discussed in this paper.
Xue, Nan, Wu, Xiaofan, Gumussoy, Suat, Muenz, Ulrich, Mesanovic, Amer, Dong, Zerui, Bharati, Guna, Chakraborty, Sudipta, Electric, Hawaiian.  2021.  Dynamic Security Optimization for N-1 Secure Operation of Power Systems with 100% Non-Synchronous Generation: First experiences from Hawai'i Island. 2021 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.

Fattakhov, Ruslan, Loginov, Sergey.  2021.  Discrete-nonlinear Colpitts oscillator based communication security increasing of the OFDM systems. 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS). :253—256.

This article reports results about the development of the algorithm that allows to increase the information security of OFDM communication system based on the discrete-nonlinear Colpitts system with dynamic chaos. Proposed system works on two layers: information and transport. In the first one, Arnold Transform was applied. The second one, transport level security was provided by QAM constellation mixing. Correlation coefficients, Shannon's entropy and peak-to-average power ratio (PAPR) were estimated.

2022-05-03
Mohan, K. Madan, Yadav, B V Ram Naresh.  2021.  Dynamic Graph Based Encryption Scheme for Cloud Based Services and Storage. 2021 9th International Conference on Cyber and IT Service Management (CITSM). :1—4.

Cloud security includes the strategies which works together to guard data and infrastructure with a set of policies, procedures, controls and technologies. These security events are arranged to protect cloud data, support supervisory obedience and protect customers' privacy as well as setting endorsement rules for individual users and devices. The partition-based handling and encryption mechanism which provide fine-grained admittance control and protected data sharing to the data users in cloud computing. Graph partition problems fall under the category of NP-hard problems. Resolutions to these problems are generally imitative using heuristics and approximation algorithms. Partition problems strategy is used in bi-criteria approximation or resource augmentation approaches with a common extension of hyper graphs, which can address the storage hierarchy.

Wang, Tingting, Zhao, Xufeng, Lv, Qiujian, Hu, Bo, Sun, Degang.  2021.  Density Weighted Diversity Based Query Strategy for Active Learning. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :156—161.

Deep learning has made remarkable achievements in various domains. Active learning, which aims to reduce the budget for training a machine-learning model, is especially useful for the Deep learning tasks with the demand of a large number of labeled samples. Unfortunately, our empirical study finds that many of the active learning heuristics are not effective when applied to Deep learning models in batch settings. To tackle these limitations, we propose a density weighted diversity based query strategy (DWDS), which makes use of the geometry of the samples. Within a limited labeling budget, DWDS enhances model performance by querying labels for the new training samples with the maximum informativeness and representativeness. Furthermore, we propose a beam-search based method to obtain a good approximation to the optimum of such samples. Our experiments show that DWDS outperforms existing algorithms in Deep learning tasks.

2022-04-26
Feng, Ling, Feng, Bin, Zhang, Lei, Duan, XiQiang.  2021.  Design of an Authorized Digital Signature Scheme for Sensor Network Communication in Secure Internet of Things. 2021 3rd International Symposium on Robotics Intelligent Manufacturing Technology (ISRIMT). :496–500.

With the rapid development of Internet of Things technology and sensor networks, large amount of data is facing security challenges in the transmission process. In the process of data transmission, the standardization and authentication of data sources are very important. A digital signature scheme based on bilinear pairing problem is designed. In this scheme, by signing the authorization mechanism, the management node can control the signature process and distribute data. The use of private key segmentation mechanism can reduce the performance requirements of sensor nodes. The reasonable combination of timestamp mechanism can ensure the time limit of signature and be verified after the data is sent. It is hoped that the implementation of this scheme can improve the security of data transmission on the Internet of things environment.

2022-04-25
Ajoy, Atmik, Mahindrakar, Chethan U, Gowrish, Dhanya, A, Vinay.  2021.  DeepFake Detection using a frame based approach involving CNN. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :1329–1333.
This paper proposes a novel model to detect Deep-Fakes, which are hyper-realistic fake videos generated by advanced AI algorithms involving facial superimposition. With a growing number of DeepFakes involving prominent political figures that hold a lot of social capital, their misuse can lead to drastic repercussions. These videos can not only be used to circulate false information causing harm to reputations of individuals, companies and countries, but also has the potential to cause civil unrest through mass hysteria. Hence it is of utmost importance to detect these DeepFakes and promptly curb their spread. We therefore propose a CNN-based model that learns inherently distinct patterns that change between a DeepFake and a real video. These distinct features include pixel distortion, inconsistencies with facial superimposition, skin colour differences, blurring and other visual artifacts. The proposed model has trained a CNN (Convolutional Neural Network), to effectively distinguish DeepFake videos using a frame-based approach based on aforementioned distinct features. Herein, the proposed work demonstrates the viability of our model in effectively identifying Deepfake faces in a given video source, so as to aid security applications employed by social-media platforms in credibly tackling the ever growing threat of Deepfakes, by effectively gauging the authenticity of videos, so that they may be flagged or ousted before they can cause irreparable harm.
Khalil, Hady A., Maged, Shady A..  2021.  Deepfakes Creation and Detection Using Deep Learning. 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :1–4.
Deep learning has been used in a wide range of applications like computer vision, natural language processing and image detection. The advancement in deep learning algorithms in image detection and manipulation has led to the creation of deepfakes, deepfakes use deep learning algorithms to create fake images that are at times very hard to distinguish from real images. With the rising concern around personal privacy and security, Many methods to detect deepfake images have emerged, in this paper the use of deep learning for creating as well as detecting deepfakes is explored, this paper also propose the use of deep learning image enhancement method to improve the quality of deepfakes created.
Joseph, Zane, Nyirenda, Clement.  2021.  Deepfake Detection using a Two-Stream Capsule Network. 2021 IST-Africa Conference (IST-Africa). :1–8.
This paper aims to address the problem of Deepfake Detection using a Two-Stream Capsule Network. First we review methods used to create Deepfake content, as well as methods proposed in the literature to detect such Deepfake content. We then propose a novel architecture to detect Deepfakes, which consists of a two-stream Capsule network running in parallel that takes in both RGB images/frames as well as Error Level Analysis images. Results show that the proposed approach exhibits the detection accuracy of 73.39 % and 57.45 % for the Deepfake Detection Challenge (DFDC) and the Celeb-DF datasets respectively. These results are, however, from a preliminary implementation of the proposed approach. As part of future work, population-based optimization techniques such as Particle Swarm Optimization (PSO) will be used to tune the hyper parameters for better performance.
Li, Yuezun, Zhang, Cong, Sun, Pu, Ke, Lipeng, Ju, Yan, Qi, Honggang, Lyu, Siwei.  2021.  DeepFake-o-meter: An Open Platform for DeepFake Detection. 2021 IEEE Security and Privacy Workshops (SPW). :277–281.
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
Ren, Jing, Xia, Feng, Liu, Yemeng, Lee, Ivan.  2021.  Deep Video Anomaly Detection: Opportunities and Challenges. 2021 International Conference on Data Mining Workshops (ICDMW). :959–966.
Anomaly detection is a popular and vital task in various research contexts, which has been studied for several decades. To ensure the safety of people’s lives and assets, video surveillance has been widely deployed in various public spaces, such as crossroads, elevators, hospitals, banks, and even in private homes. Deep learning has shown its capacity in a number of domains, ranging from acoustics, images, to natural language processing. However, it is non-trivial to devise intelligent video anomaly detection systems cause anomalies significantly differ from each other in different application scenarios. There are numerous advantages if such intelligent systems could be realised in our daily lives, such as saving human resources in a large degree, reducing financial burden on the government, and identifying the anomalous behaviours timely and accurately. Recently, many studies on extending deep learning models for solving anomaly detection problems have emerged, resulting in beneficial advances in deep video anomaly detection techniques. In this paper, we present a comprehensive review of deep learning-based methods to detect the video anomalies from a new perspective. Specifically, we summarise the opportunities and challenges of deep learning models on video anomaly detection tasks, respectively. We put forth several potential future research directions of intelligent video anomaly detection system in various application domains. Moreover, we summarise the characteristics and technical problems in current deep learning methods for video anomaly detection.
Rescio, Tommaso, Favale, Thomas, Soro, Francesca, Mellia, Marco, Drago, Idilio.  2021.  DPI Solutions in Practice: Benchmark and Comparison. 2021 IEEE Security and Privacy Workshops (SPW). :37–42.
Having a clear insight on the protocols carrying traffic is crucial for network applications. Deep Packet Inspection (DPI) has been a key technique to provide visibility into traffic. DPI has proven effective in various scenarios, and indeed several open source DPI solutions are maintained by the community. Yet, these solutions provide different classifications, and it is hard to establish a common ground truth. Independent works approaching the question of the quality of DPI are already aged and rely on limited datasets. Here, we test if open source DPI solutions can provide useful information in practical scenarios, e.g., supporting security applications. We provide an evaluation of the performance of four open-source DPI solutions, namely nDPI, Libprotoident, Tstat and Zeek. We use datasets covering various traffic scenarios, including operational networks, IoT scenarios and malware. As no ground truth is available, we study the consistency of classification across the solutions, investigating rootcauses of conflicts. Important for on-line security applications, we check whether DPI solutions provide reliable classification with a limited number of packets per flow. All in all, we confirm that DPI solutions still perform satisfactorily for well-known protocols. They however struggle with some P2P traffic and security scenarios (e.g., with malware traffic). All tested solutions reach a final classification after observing few packets with payload, showing adequacy for on-line applications.
Dijk, Allard.  2021.  Detection of Advanced Persistent Threats using Artificial Intelligence for Deep Packet Inspection. 2021 IEEE International Conference on Big Data (Big Data). :2092–2097.

Advanced persistent threats (APT’s) are stealthy threat actors with the skills to gain covert control of the computer network for an extended period of time. They are the highest cyber attack risk factor for large companies and states. A successful attack via an APT can cost millions of dollars, can disrupt civil life and has the capabilities to do physical damage. APT groups are typically state-sponsored and are considered the most effective and skilled cyber attackers. Attacks of APT’s are executed in several stages as pointed out in the Lockheed Martin cyber kill chain (CKC). Each of these APT stages can potentially be identified as patterns in network traffic. Using the "APT-2020" dataset, that compiles the characteristics and stages of an APT, we carried out experiments on the detection of anomalous traffic for all APT stages. We compare several artificial intelligence models, like a stacked auto encoder, a recurrent neural network and a one class state vector machine and show significant improvements on detection in the data exfiltration stage. This dataset is the first to have a data exfiltration stage included to experiment on. According to APT-2020’s authors current models have the biggest challenge specific to this stage. We introduce a method to successfully detect data exfiltration by analyzing the payload of the network traffic flow. This flow based deep packet inspection approach improves detection compared to other state of the art methods.

Mahendra, Lagineni, Kumar, R.K. Senthil, Hareesh, Reddi, Bindhumadhava, B.S., Kalluri, Rajesh.  2021.  Deep Security Scanner for Industrial Control Systems. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). :447–452.

with the continuous growing threat of cyber terrorism, the vulnerability of the industrial control systems (ICS) is the most common subject for security researchers now. Attacks on ICS systems keep increasing and their impact leads to human safety issues, equipment damage, system down, unusual output, loss of visibility and control, and various other catastrophic failures. Many of the industrial control systems are relatively insecure with chronic and pervasive vulnerabilities. Modbus-Tcpis one of the widely used communication protocols in the ICS/ Supervisory control and data acquisition (SCADA) system to transmit signals from instrumentation and control devices to the main controller of the control center. Modbus is a plain text protocol without any built-in security mechanisms, and Modbus is a standard communication protocol, widely used in critical infrastructure applications such as power systems, water, oil & gas, etc.. This paper proposes a passive security solution called Deep-security-scanner (DSS) tailored to Modbus-Tcpcommunication based Industrial control system (ICS). DSS solution detects attacks on Modbus-TcpIcs networks in a passive manner without disturbing the availability requirements of the system.

2022-04-22
Liu, Bo, Kong, Qingshan, Huang, Weiqing, Guo, Shaoying.  2021.  Detection of Events in OTDR Data via Variational Mode Decomposition and Hilbert Transform. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). :38—43.
Optical time domain reflectometry (OTDR) plays an important role in optical fiber communications. To improve the performance of OTDR, we propose a method based on the Variational Mode Decomposition (VMD) and Hilbert transform (HT) for fiber events detection. Firstly, the variational mode decomposition is applied to decompose OTDR data into some intrinsic mode functions (imfs). To determine the decomposition mode number in VMD, an adaptive estimation method is introduced. Secondly, the Hilbert transform is utilized to obtain the instantaneous amplitude of the imf for events localization. Finally, the Dynamic Time Warping (DTW) is used for identifying the type of event. Experimental results show that the proposed method can locate events accurately. Compared with the Short-Time Fourier Transform (STFT) method, the VMD-HT method presents a higher accuracy in events localization, which indicates that the method is effective and applicable.
Bura, Romie Oktovianus, Lahallo, Cardian Althea Stephanie.  2021.  Design and Development of Digital Image Security Using AES Algorithm with Discrete Wavelet Transformation Method. 2021 6th International Workshop on Big Data and Information Security (IWBIS). :153—158.
Network Centric Warfare (NCW) is a design that supports information excellence for the concept of military operations. Network Centric Warfare is currently being developed as the basis for the operating concept, namely multidimensional operations. TNI operations do not rely on conventional warfare. TNI operations must work closely with the TNI Puspen team, territorial intelligence, TNI cyber team, and support task force. Sending digital images sent online requires better techniques to maintain confidentiality. The purpose of this research is to design digital image security with AES cryptography and discrete wavelet transform method on interoperability and to utilize and study discrete wavelet transform method and AES algorithm on interoperability for digital image security. The AES cryptography technique in this study is used to protect and maintain the confidentiality of the message while the Discrete Wavelet Transform in this study is used to reduce noise by applying a discrete wavelet transform, which consists of three main steps, namely: image decomposition, thresholding process and image reconstruction. The result of this research is that Digital Image Security to support TNI interoperability has been produced using the C \# programming language framework. NET and Xampp to support application development. Users can send data in the form of images. Discrete Wavelet Transformation in this study is used to find the lowest value against the threshold so that the resulting level of security is high. Testing using the AESS algorithm to encrypt and decrypt image files using key size and block size.
Deng, Weimin, Xu, Da, Xu, Yuhan, Li, Mengshi.  2021.  Detection and Classification of Power Quality Disturbances Using Variational Mode Decomposition and Convolutional Neural Networks. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1514—1518.
Power quality gains more and more attentions because disturbances in power quality may damage equipment security, power availability and system reliability in power system. Detection and classification of the power quality disturbances is the first step before taking measures to lessen their harmful effects. Common methods to classify power quality disturbances includes signal processing methods, machine learning methods and deep learning methods. Signal processing methods are good at feature extraction, while machine learning methods and deep learning methods are expert in multi-classification tasks. Via combing their respective advantages, this paper proposes a combined method based on variational mode decomposition and convolutional neural networks, which needs a small quantity of samples but achieves high classification precision. The proposed method is proved to be a qualified and competitive scheme for the detection and classification of power quality disturbances.
2022-04-19
Lee, Taerim, Moon, Ho-Se, Jang, Juwook.  2021.  Data Encryption Method Using CP-ABE with Symmetric Key Algorithm in Blockchain Network. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :1371–1373.
This paper proposes a method of encrypting data stored in the blockchain network by applying ciphertext-policy attribute-based encryption (CP-ABE) and symmetric key algorithm. This method protects the confidentiality and privacy of data that is not protected in blockchain networks, and stores data in a more efficient way than before. The proposed model has the same characteristics of CP-ABE and has a faster processing speed than when only CP-ABE is used.
Chen, Quan, Snyder, Peter, Livshits, Ben, Kapravelos, Alexandros.  2021.  Detecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Signatures. 2021 IEEE Symposium on Security and Privacy (SP). :1715–1729.

Content blocking is an important part of a per-formant, user-serving, privacy respecting web. Current content blockers work by building trust labels over URLs. While useful, this approach has many well understood shortcomings. Attackers may avoid detection by changing URLs or domains, bundling unwanted code with benign code, or inlining code in pages.The common flaw in existing approaches is that they evaluate code based on its delivery mechanism, not its behavior. In this work we address this problem by building a system for generating signatures of the privacy-and-security relevant behavior of executed JavaScript. Our system uses as the unit of analysis each script's behavior during each turn on the JavaScript event loop. Focusing on event loop turns allows us to build highly identifying signatures for JavaScript code that are robust against code obfuscation, code bundling, URL modification, and other common evasions, as well as handle unique aspects of web applications.This work makes the following contributions to the problem of measuring and improving content blocking on the web: First, we design and implement a novel system to build per-event-loop-turn signatures of JavaScript behavior through deep instrumentation of the Blink and V8 runtimes. Second, we apply these signatures to measure how much privacy-and-security harming code is missed by current content blockers, by using EasyList and EasyPrivacy as ground truth and finding scripts that have the same privacy and security harming patterns. We build 1,995,444 signatures of privacy-and-security relevant behaviors from 11,212 unique scripts blocked by filter lists, and find 3,589 unique scripts hosting known harmful code, but missed by filter lists, affecting 12.48% of websites measured. Third, we provide a taxonomy of ways scripts avoid detection and quantify the occurrence of each. Finally, we present defenses against these evasions, in the form of filter list additions where possible, and through a proposed, signature based system in other cases.As part of this work, we share the implementation of our signature-generation system, the data gathered by applying that system to the Alexa 100K, and 586 AdBlock Plus compatible filter list rules to block instances of currently blocked code being moved to new URLs.