Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2022-04-19
Chen, Hsing-Chung, Nshimiyimana, Aristophane, Damarjati, Cahya, Chang, Pi-Hsien.  2021.  Detection and Prevention of Cross-site Scripting Attack with Combined Approaches. 2021 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Cross-site scripting (XSS) attack is a kind of code injection that allows an attacker to inject malicious scripts code into a trusted web application. When a user tries to request the injected web page, he is not aware that the malicious script code might be affecting his computer. Nowadays, attackers are targeting the web applications that holding a sensitive data (e.g., bank transaction, e-mails, healthcare, and e-banking) to steal users' information and gain full access to the data which make the web applications to be more vulnerable. In this research, we applied three approaches to find a solution to this most challenging attacks issues. In the first approach, we implemented Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (k-NN), and Support Vector Machine (SVM) algorithms to discover and classify XSS attack. In the second approach, we implemented the Content Security Policy (CSP) approach to detect XSS attacks in real-time. In the last approach, we propose a new approach that combines the Web Application Firewall (WAF), Intrusion Detection System (IDS), and Intrusion Prevention System (IPS) to detect and prevent XSS attack in real-time. Our experiment results demonstrated the high performance of AI algorithms. The CSP approach shows the results for the detection system report in real-time. In the third approach, we got more expected system results that make our third model system a more powerful tool to address this research problem than the other two approaches.
Cheng, Quan, Yang, Yin, Gui, Xin.  2021.  Disturbance Signal Recognition Using Convolutional Neural Network for DAS System. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :278–281.

Distributed acoustic sensing (DAS) systems based on fiber brag grating (FBG) have been widely used for distributed temperature and strain sensing over the past years, and function well in perimeter security monitoring and structural health monitoring. However, with relevant algorithms functioning with low accuracy, the DAS system presently has trouble in signal recognition, which puts forward a higher requirement on a high-precision identification method. In this paper, we propose an improved recognition method based on relative fundamental signal processing methods and convolutional neural network (CNN) to construct a mathematical model of disturbance FBG signal recognition. Firstly, we apply short-time energy (STE) to extract original disturbance signals. Secondly, we adopt short-time Fourier transform (STFT) to divide a longer time signal into short segments. Finally, we employ a CNN model, which has already been trained to recognize disturbance signals. Experimental results conducted in the real environments show that our proposed algorithm can obtain accuracy over 96.5%.

Kumar, Vipin, Malik, Navneet.  2021.  Dynamic Key Management Scheme for Clustered Sensor Networks with Node Addition Support. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :102–107.
A sensor network is wireless with tiny nodes and widely used in various applications. To track the event and collect the data from a remote area or a hostile area sensor network is used. A WSN collects wirelessly connected tiny sensors with minimal resources like the battery, computation power, and memory. When a sensor collects data, it must be transferred to the control center through the gateway (Sink), and it must be transferred safely. For secure transfer of data in the network, the routing protocol must be safe and can use the cryptography method for authentication and confidentiality. An essential issue in WSN structure is the key management. WSN relies on the strength of the communicating devices, battery power, and sensor nodes to communicate in the wireless environment over a limited region. Due to energy and memory limitations, the construction of a fully functional network needs to be well arranged. Several techniques are available in the current literature for such key management techniques. Among the distribution of key over the network, sharing private and public keys is the most important. Network security is not an easy problem because of its limited resources, and these networks are deployed in unattended areas where they work without any human intervention. These networks are used to monitor buildings and airports, so security is always a major issue for these networks. In this paper, we proposed a dynamic key management scheme for the clustered sensor network that also supports the addition of a new node in the network later. Keys are dynamically generated and securely distributed to communication parties with the help of a cluster head. We verify the immunity of the scheme against various attacks like replay attack and node captured attacker. A simulation study was also done on energy consumption for key setup and refreshed the keys. Security analysis of scheme shows batter resiliency against node capture attack.
2022-04-18
Babenko, Liudmila, Shumilin, Alexander, Alekseev, Dmitry.  2021.  Development of the Algorithm to Ensure the Protection of Confidential Data in Cloud Medical Information System. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1–4.
The main purpose to ensure the security for confidential medical data is to develop and implement the architecture of a medical cloud system, for storage, systematization, and processing of survey results (for example EEG) jointly with an algorithm for ensuring the protection of confidential data based on a fully homomorphic cryptosystem. The most optimal algorithm based on the test results (analysis of the time of encryption, decryption, addition, multiplication, the ratio of the signal-to-noise of the ciphertext to the open text), has been selected between two potential applicants for using (BFV and CKKS schemes). As a result, the CKKS scheme demonstrates maximal effectiveness in the context of the criticality of the requirements for an important level of security.
Enireddy, Vamsidhar, Somasundaram, K., Mahesh M, P. C. Senthil, Ramkumar Prabhu, M., Babu, D. Vijendra, C, Karthikeyan..  2021.  Data Obfuscation Technique in Cloud Security. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :358–362.
Cloud storage, in general, is a collection of Computer Technology resources provided to consumers over the internet on a leased basis. Cloud storage has several advantages, including simplicity, reliability, scalability, convergence, and cost savings. One of the most significant impediments to cloud computing's growth is security. This paper proposes a security approach based on cloud security. Cloud security now plays a critical part in everyone's life. Due to security concerns, data is shared between cloud service providers and other users. In order to protect the data from unwanted access, the Security Service Algorithm (SSA), which is called as MONcrypt is used to secure the information. This methodology is established on the obfuscation of data techniques. The MONcrypt SSA is a Security as a Service (SaaS) product. When compared to current obfuscation strategies, the proposed methodology offers a better efficiency and smart protection. In contrast to the current method, MONcrypt eliminates the different dimensions of information that are uploaded to cloud storage. The proposed approach not only preserves the data's secrecy but also decreases the size of the plaintext. The exi sting method does not reduce the size of data until it has been obfuscated. The findings show that the recommended MONcrypt offers optimal protection for the data stored in the cloud within the shortest amount of time. The proposed protocol ensures the confidentiality of the information while reducing the plaintext size. Current techniques should not reduce the size of evidence once it has been muddled. Based on the findings, it is clear that the proposed MONcrypt provides the highest level of protection in the shortest amount of time for rethought data.
2022-04-14
Sardar, Muhammad, Musaev, Saidgani, Fetzer, Christof.  2021.  Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification.
In August 2020, Intel asked the research community for feedback on the newly offered architecture extensions, called Intel Trust Domain Extensions (TDX), which give more control to Trust Domains (TDs) over processor resources. One of the key features of these extensions is the remote attestation mechanism, which provides a unified report verification mechanism for TDX and its predecessor Software Guard Extensions (SGX). Based on our experience and intuition, we respond to the request for feedback by formally specifying the attestation mechanism in the TDX using ProVerif's specification language. Although the TDX technology seems very promising, the process of formal specification reveals a number of subtle discrepancies in Intel's specifications that could potentially lead to design and implementation flaws. After resolving these discrepancies, we also present fully automated proofs that our specification of TD attestation preserves the confidentiality of the secret and authentication of the report by considering the state-of-the-art Dolev-Yao adversary in the symbolic model using ProVerif. We have submitted the draft to Intel, and Intel is in the process of making the changes.
2022-04-13
Abdiyeva-Aliyeva, Gunay, Hematyar, Mehran, Bakan, Sefa.  2021.  Development of System for Detection and Prevention of Cyber Attacks Using Artifıcial Intelligence Methods. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1—5.
Artificial intelligence (AI) technologies have given the cyber security industry a huge leverage with the possibility of having significantly autonomous models that can detect and prevent cyberattacks – even though there still exist some degree of human interventions. AI technologies have been utilized in gathering data which can then be processed into information that are valuable in the prevention of cyberattacks. These AI-based cybersecurity frameworks have commendable scalability about them and are able to detect malicious activities within the cyberspace in a prompter and more efficient manner than conventional security architectures. However, our one or two completed studies did not provide a complete and clear analyses to apply different machine learning algorithms on different media systems. Because of the existing methods of attack and the dynamic nature of malware or other unwanted software (adware etc.) it is important to automatically and systematically create, update and approve malicious packages that can be available to the public. Some of Complex tests have shown that DNN performs maybe can better than conventional machine learning classification. Finally, we present a multiple, large and hybrid DNN torrent structure called Scale-Hybrid-IDS-AlertNet, which can be used to effectively monitor to detect and review the impact of network traffic and host-level events to warn directly or indirectly about cyber-attacks. Besides this, they are also highly adaptable and flexible, with commensurate efficiency and accuracy when it comes to the detection and prevention of cyberattacks.There has been a multiplicity of AI-based cyber security architectures in recent years, and each of these has been found to show varying degree of effectiveness. Deep Neural Networks, which tend to be more complex and even more efficient, have been the major focus of research studies in recent times. In light of the foregoing, the objective of this paper is to discuss the use of AI methods in fighting cyberattacks like malware and DDoS attacks, with attention on DNN-based models.
Mishra, Sarthak, Chatterjee, Pinaki Sankar.  2021.  D3: Detection and Prevention of DDoS Attack Using Cuckoo Filter. 2021 19th OITS International Conference on Information Technology (OCIT). :279—284.
DDoS attacks have grown in popularity as a tactic for potential hackers, cyber blackmailers, and cyberpunks. These attacks have the potential to put a person unconscious in a matter of seconds, resulting in severe economic losses. Despite the vast range of conventional mitigation techniques available today, DDoS assaults are still happening to grow in frequency, volume, and intensity. A new network paradigm is necessary to meet the requirements of today's tough security issues. We examine the available detection and mitigation of DDoS attacks techniques in depth. We classify solutions based on detection of DDoS attacks methodologies and define the prerequisites for a feasible solution. We present a novel methodology named D3 for detecting and mitigating DDoS attacks using cuckoo filter.
Kumar, Shubham, Chandavarkar, B.R..  2021.  DDOS prevention in IoT. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—6.
Connecting anything to the Internet is one of the main objectives of the Internet of Things (IoT). It enabled to access any device from anywhere at any time without any human intervention. There are endless applications of IoT involving controlling home applications to industry. This rapid growth of this technology and innovations of its application results due to improved technology of developing these tiny devices with its back-end software. On the other side, internal resources such as memory, processing power, battery life are the significant constraints of these devices. Introducing lightweight cryptography helped secure data transmission across various devices while protecting these devices from getting attacked for DDoS attack is still a significant concern. This paper primarily focuses on elaborating on DDoS attack and the malware used to initiate a DDoS attack on IoT devices. Further, this paper mainly focuses on providing solutions that would help to prevent DDoS attack from IoT network.
Gera, Jaideep, Rejeti, Venkata Kishore Kumar, Sekhar, Jaladi N Chandra, Shankar, A Siva.  2021.  Distributed Denial of Service Attack Prevention from Traffic Flow for Network Performance Enhancement. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :406—413.
Customer Relationship Management (CRM), Supply Chain Management (SCM), banking, and e-commerce are just a few of the internet-primarily based commercial enterprise programmes that make use of distributed computing generation. These programmes are the principal target of large-scale attacks known as DDoS attacks, which cause the denial of service (DoS) of resources to legitimate customers. Servers that provide dependable services to real consumers in distributed environments are vulnerable to such attacks, which send phoney requests that appear legitimate. Flash crowd, on the other hand, is a massive collection of traffic generated by flash events that imitate Distributed Denial of Service assaults. Detecting and distinguishing between Distributed Denial of Service assaults and flash crowds is a difficult problem to tackle, as is preventing DDoS attacks. Existing solutions are generally intended for DDoS attacks or flash crowds, and more research is required to have a thorough understanding. This study presents a technique for distinguishing between different types of Distributed Denial of Service attacks and Flash Crowds. This research work has suggested an approach to prevent DDOS attacks in addition to detecting and discriminating. The performance of the suggested technique is validated using NS-2 simulations.
Dalvi, Jai, Sharma, Vyomesh, Shetty, Ruchika, Kulkarni, Sujata.  2021.  DDoS Attack Detection using Artificial Neural Network. 2021 International Conference on Industrial Electronics Research and Applications (ICIERA). :1—5.
Distributed denial of service (DDoS) attacks is one of the most evolving threats in the current Internet situation and yet there is no effective mechanism to curb it. In the field of DDoS attacks, as in all other areas of cybersecurity, attackers are increasingly using sophisticated methods. The work in this paper focuses on using Artificial Neural Network to detect various types of DDOS attacks(UDP-Flood, Smurf, HTTP-Flood and SiDDoS). We would be mainly focusing on the network and transport layer DDoS attacks. Additionally, the time and space complexity is also calculated to further improve the efficiency of the model implemented and overcome the limitations found in the research gap. The results obtained from our analysis on the dataset show that our proposed methods can better detect the DDoS attack.
Chu, Hung-Chi, Yan, Chan-You.  2021.  DDoS Attack Detection with Packet Continuity Based on LSTM Model. 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE). :44—47.
Most information systems rely on the Internet to provide users with various services. Distributed Denial-of-Service (DDoS) attacks are currently one of the main cyber threats, which causes the system or network disabled. To ensure that the information system can provide services for users normally, it is important to detect the occurrence of DDoS attacks quickly and accurately. Therefore, this research proposes a system based on packet continuity to detect DDoS attacks. On average, it only takes a few milliseconds to collect a certain number of consecutive packets, and then DDoS attacks can be detected. Experimental results show that the accuracy of detecting DDoS attacks based on packet continuity is higher than 99.9% and the system response time is about 5 milliseconds.
Bozorov, Suhrobjon.  2021.  DDoS Attack Detection via IDS: Open Challenges and Problems. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This paper discusses DDoS attacks, their current threat level and IDS systems, which are one of the main tools to protect against them. It focuses on the problems encountered by IDS systems in detecting DDoS attacks and the difficulties and challenges of integrating them with artificial intelligence systems today.
Nugraha, Beny, Kulkarni, Naina, Gopikrishnan, Akash.  2021.  Detecting Adversarial DDoS Attacks in Software- Defined Networking Using Deep Learning Techniques and Adversarial Training. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :448—454.
In recent years, Deep Learning (DL) has been utilized for cyber-attack detection mechanisms as it offers highly accurate detection and is able to overcome the limitations of standard machine learning techniques. When applied in a Software-Defined Network (SDN) environment, a DL-based detection mechanism shows satisfying detection performance. However, in the case of adversarial attacks, the detection performance deteriorates. Therefore, in this paper, first, we outline a highly accurate flooding DDoS attack detection framework based on DL for SDN environments. Second, we investigate the performance degradation of our detection framework when being tested with two adversary traffic datasets. Finally, we evaluate three adversarial training procedures for improving the detection performance of our framework concerning adversarial attacks. It is shown that the application of one of the adversarial training procedures can avoid detection performance degradation and thus might be used in a real-time detection system based on continual learning.
Arthi, R, Krishnaveni, S.  2021.  Design and Development of IOT Testbed with DDoS Attack for Cyber Security Research. 2021 3rd International Conference on Signal Processing and Communication (ICPSC). :586—590.
The Internet of Things (IoT) is clubbed by networking of sensors and other embedded electronics. As more devices are getting connected, the vulnerability of getting affected by various IoT threats also increases. Among the IoT threads, DDoS attacks are causing serious issues in recent years. In IoT, these attacks are challenging to detect and isolate. Thus, an effective Intrusion Detection System (IDS) is essential to defend against these attacks. The traditional IDS is based on manual blacklisting. These methods are time-consuming and will not be effective to detect novel intrusions. At present, IDS are automated and programmed to be dynamic which are aided by machine learning & deep learning models. The performance of these models mainly depends on the data used to train the model. Majority of IDS study is performed with non-compatible and outdated datasets like KDD 99 and NSL KDD. Research on specific DDoS attack datasets is very less. Therefore, in this paper, we first aim to examine the effect of existing datasets in the IoT environment. Then, we propose a real-time data collection framework for DNS amplification attacks in IoT. The generated network packets containing DDoS attack is captured through port mirroring.
Kousar, Heena, Mulla, Mohammed Moin, Shettar, Pooja, D. G., Narayan.  2021.  DDoS Attack Detection System using Apache Spark. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
Distributed Denial of Service Attacks (DDoS) are most widely used cyber-attacks. Thus, design of DDoS detection mechanisms has attracted attention of researchers. Design of these mechanisms involves building statistical and machine learning models. Most of the work in design of mechanisms is focussed on improving the accuracy of the model. However, due to large volume of network traffic, scalability and performance of these techniques is an important research issue. In this work, we use Apache Spark framework for detection of DDoS attacks. We use NSL-KDD Cup as a benchmark dataset for experimental analysis. The results reveal that random forest performs better than decision trees and distributed processing improves the performance in terms of pre-processing and training time.
Goldschmidt, Patrik, Kučera, Jan.  2021.  Defense Against SYN Flood DoS Attacks Using Network-based Mitigation Techniques. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :772—777.

TCP SYN Flood is one of the most widespread DoS attack types performed on computer networks nowadays. As a possible countermeasure, we implemented and deployed modified versions of three network-based mitigation techniques for TCP SYN authentication. All of them utilize the TCP three-way handshake mechanism to establish a security association with a client before forwarding its SYN data. These algorithms are especially effective against regular attacks with spoofed IP addresses. However, our modifications allow deflecting even more sophisticated SYN floods able to bypass most of the conventional approaches. This comes at the cost of the delayed first connection attempt, but all subsequent SYN segments experience no significant additional latency (\textbackslashtextless; 0.2ms). This paper provides a detailed description and analysis of the approaches, as well as implementation details with enhanced security tweaks. The discussed implementations are built on top of the hardware-accelerated FPGA-based DDoS protection solution developed by CESNET and are about to be deployed in its backbone network and Internet exchange point at NIX.CZ.

Khashab, Fatima, Moubarak, Joanna, Feghali, Antoine, Bassil, Carole.  2021.  DDoS Attack Detection and Mitigation in SDN using Machine Learning. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :395—401.

Software Defined Networking (SDN) is a networking paradigm that has been very popular due to its advantages over traditional networks with regard to scalability, flexibility, and its ability to solve many security issues. Nevertheless, SDN networks are exposed to new security threats and attacks, especially Distributed Denial of Service (DDoS) attacks. For this aim, we have proposed a model able to detect and mitigate attacks automatically in SDN networks using Machine Learning (ML). Different than other approaches found in literature which use the native flow features only for attack detection, our model extends the native features. The extended flow features are the average flow packet size, the number of flows to the same host as the current flow in the last 5 seconds, and the number of flows to the same host and port as the current flow in the last 5 seconds. Six ML algorithms were evaluated, namely Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The experiments showed that RF is the best performing ML algorithm. Also, results showed that our model is able to detect attacks accurately and quickly, with a low probability of dropping normal traffic.

Chahal, Jasmeen Kaur, Kaur, Puninder, Sharma, Avinash.  2021.  Distributed Denial of Service (DDoS) Attacks in Software-defined Networks (SDN). 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT). :291—295.

Software-defined networking (SDN) is a new networking architecture having the concept of separation of control plane and data plane that leads the existing networks to be programmable, dynamically configurable and extremely flexible. This paradigm has huge benefits to organizations and large networks, however, its security is major issue and Distributed Denial of Service (DDoS) Attack has become a serious concern for the working of SDN. In this article, we have proposed a taxonomy of DDoS Defense Mechanisms in SDN Environment. We have categorized the various DDoS detection and mitigation techniques with respect to switch intelligence, Defense Deployment, Defense Activity and Network Flow Activities.

Nurwarsito, Heru, Nadhif, Muhammad Fahmy.  2021.  DDoS Attack Early Detection and Mitigation System on SDN using Random Forest Algorithm and Ryu Framework. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :178—183.

Distributed Denial of Service (DDoS) attacks became a true threat to network infrastructure. DDoS attacks are capable of inflicting major disruption to the information communication technology infrastructure. DDoS attacks aim to paralyze networks by overloading servers, network links, and network devices with illegitimate traffic. Therefore, it is important to detect and mitigate DDoS attacks to reduce the impact of DDoS attacks. In traditional networks, the hardware and software to detect and mitigate DDoS attacks are expensive and difficult to deploy. Software-Defined Network (SDN) is a new paradigm in network architecture by separating the control plane and data plane, thereby increasing scalability, flexibility, control, and network management. Therefore, SDN can dynamically change DDoS traffic forwarding rules and improve network security. In this study, a DDoS attack detection and mitigation system was built on the SDN architecture using the random forest machine-learning algorithm. The random forest algorithm will classify normal and attack packets based on flow entries. If packets are classified as a DDoS attack, it will be mitigated by adding flow rules to the switch. Based on tests that have been done, the detection system can detect DDoS attacks with an average accuracy of 98.38% and an average detection time of 36 ms. Then the mitigation system can mitigate DDoS attacks with an average mitigation time of 1179 ms and can reduce the average number of attack packets that enter the victim host by 15672 packets and can reduce the average number of CPU usage on the controller by 44,9%.

Sun, He, Liu, Rongke, Tian, Kuangda, Zou, Tong, Feng, Baoping.  2021.  Deletion Error Correction based on Polar Codes in Skyrmion Racetrack Memory. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Skyrmion racetrack memory (Sk-RM) is a new storage technology in which skyrmions are used to represent data bits to provide high storage density. During the reading procedure, the skyrmion is driven by a current and sensed by a fixed read head. However, synchronization errors may happen if the skyrmion does not pass the read head on time. In this paper, a polar coding scheme is proposed to correct the synchronization errors in the Sk-RM. Firstly, we build two error correction models for the reading operation of Sk-RM. By connecting polar codes with the marker codes, the number of deletion errors can be determined. We also redesign the decoding algorithm to recover the information bits from the readout sequence, where a tighter bound of the segmented deletion errors is derived and a novel parity check strategy is designed for better decoding performance. Simulation results show that the proposed coding scheme can efficiently improve the decoding performance.
Ahmad Riduan, Nuraqilah Haidah, Feresa Mohd Foozy, Cik, Hamid, Isredza Rahmi A, Shamala, Palaniappan, Othman, Nur Fadzilah.  2021.  Data Wiping Tool: ByteEditor Technique. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
This Wiping Tool is an anti-forensic tool that is built to wipe data permanently from laptop's storage. This tool is capable to ensure the data from being recovered with any recovery tools. The objective of building this wiping tool is to maintain the confidentiality and integrity of the data from unauthorized access. People tend to delete the file in normal way, however, the file face the risk of being recovered. Hence, the integrity and confidentiality of the deleted file cannot be protected. Through wiping tools, the files are overwritten with random strings to make the files no longer readable. Thus, the integrity and the confidentiality of the file can be protected. Regarding wiping tools, nowadays, lots of wiping tools face issue such as data breach because the wiping tools are unable to delete the data permanently from the devices. This situation might affect their main function and a threat to their users. Hence, a new wiping tool is developed to overcome the problem. A new wiping tool named Data Wiping tool is applying two wiping techniques. The first technique is Randomized Data while the next one is enhancing wiping technique, known as ByteEditor. ByteEditor is a combination of two different techniques, byte editing and byte deletion. With the implementation of Object-Oriented methodology, this wiping tool is built. This methodology consists of analyzing, designing, implementation and testing. The tool is analyzed and compared with other wiping tools before the designing of the tool start. Once the designing is done, implementation phase take place. The code of the tool is created using Visual Studio 2010 with C\# language and being tested their functionality to ensure the developed tool meet the objectives of the project. This tool is believed able to contribute to the development of wiping tools and able to solve problems related to other wiping tools.
Godin, Jonathan, Lamontagne, Philippe.  2021.  Deletion-Compliance in the Absence of Privacy. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–10.
Garg, Goldwasser and Vasudevan (Eurocrypt 2020) invented the notion of deletion-compliance to formally model the “right to be forgotten’, a concept that confers individuals more control over their digital data. A requirement of deletion-compliance is strong privacy for the deletion requesters since no outside observer must be able to tell if deleted data was ever present in the first place. Naturally, many real world systems where information can flow across users are automatically ruled out.The main thesis of this paper is that deletion-compliance is a standalone notion, distinct from privacy. We present an alternative definition that meaningfully captures deletion-compliance without any privacy implications. This allows broader class of data collectors to demonstrate compliance to deletion requests and to be paired with various notions of privacy. Our new definition has several appealing properties:•It is implied by the stronger definition of Garg et al. under natural conditions, and is equivalent when we add a strong privacy requirement.•It is naturally composable with minimal assumptions.•Its requirements are met by data structure implementations that do not reveal the order of operations, a concept known as history-independence.Along the way, we discuss the many challenges that remain in providing a universal definition of compliance to the “right to be forgotten.”
Bernardi, Simona, Javierre, Raúl, Merseguer, José, Requeno, José Ignacio.  2021.  Detectors of Smart Grid Integrity Attacks: an Experimental Assessment. 2021 17th European Dependable Computing Conference (EDCC). :75–82.
Today cyber-attacks to critical infrastructures can perform outages, economical loss, physical damage to people and the environment, among many others. In particular, the smart grid is one of the main targets. In this paper, we develop and evaluate software detectors for integrity attacks to smart meter readings. The detectors rely upon different techniques and models, such as autoregressive models, clustering, and neural networks. Our evaluation considers different “attack scenarios”, then resembling the plethora of attacks found in last years. Starting from previous works in the literature, we carry out a detailed experimentation and analysis, so to identify which “detectors” best fit for each “attack scenario”. Our results contradict some findings of previous works and also offer a light for choosing the techniques that can address best the attacks to smart meters.
2022-04-12
Redini, Nilo, Continella, Andrea, Das, Dipanjan, De Pasquale, Giulio, Spahn, Noah, Machiry, Aravind, Bianchi, Antonio, Kruegel, Christopher, Vigna, Giovanni.  2021.  Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices. 2021 IEEE Symposium on Security and Privacy (SP). :484—500.
Internet of Things (IoT) devices have rooted themselves in the everyday life of billions of people. Thus, researchers have applied automated bug finding techniques to improve their overall security. However, due to the difficulties in extracting and emulating custom firmware, black-box fuzzing is often the only viable analysis option. Unfortunately, this solution mostly produces invalid inputs, which are quickly discarded by the targeted IoT device and do not penetrate its code. Another proposed approach is to leverage the companion app (i.e., the mobile app typically used to control an IoT device) to generate well-structured fuzzing inputs. Unfortunately, the existing solutions produce fuzzing inputs that are constrained by app-side validation code, thus significantly limiting the range of discovered vulnerabilities.In this paper, we propose a novel approach that overcomes these limitations. Our key observation is that there exist functions inside the companion app that can be used to generate optimal (i.e., valid yet under-constrained) fuzzing inputs. Such functions, which we call fuzzing triggers, are executed before any data-transforming functions (e.g., network serialization), but after the input validation code. Consequently, they generate inputs that are not constrained by app-side sanitization code, and, at the same time, are not discarded by the analyzed IoT device due to their invalid format. We design and develop Diane, a tool that combines static and dynamic analysis to find fuzzing triggers in Android companion apps, and then uses them to fuzz IoT devices automatically. We use Diane to analyze 11 popular IoT devices, and identify 11 bugs, 9 of which are zero days. Our results also show that without using fuzzing triggers, it is not possible to generate bug-triggering inputs for many devices.