Zhang, Dayin, Chen, Xiaojun, Shi, Jinqiao, Wang, Dakui, Zeng, Shuai.
2021.
A Differential Privacy Collaborative Deep Learning Algorithm in Pervasive Edge Computing Environment. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :347—354.
With the development of 5G technology and intelligent terminals, the future direction of the Industrial Internet of Things (IIoT) evolution is Pervasive Edge Computing (PEC). In the pervasive edge computing environment, intelligent terminals can perform calculations and data processing. By migrating part of the original cloud computing model's calculations to intelligent terminals, the intelligent terminal can complete model training without uploading local data to a remote server. Pervasive edge computing solves the problem of data islands and is also successfully applied in scenarios such as vehicle interconnection and video surveillance. However, pervasive edge computing is facing great security problems. Suppose the remote server is honest but curious. In that case, it can still design algorithms for the intelligent terminal to execute and infer sensitive content such as their identity data and private pictures through the information returned by the intelligent terminal. In this paper, we research the problem of honest but curious remote servers infringing intelligent terminal privacy and propose a differential privacy collaborative deep learning algorithm in the pervasive edge computing environment. We use a Gaussian mechanism that meets the differential privacy guarantee to add noise on the first layer of the neural network to protect the data of the intelligent terminal and use analytical moments accountant technology to track the cumulative privacy loss. Experiments show that with the Gaussian mechanism, the training data of intelligent terminals can be protected reduction inaccuracy.
Yu, Hongtao, Zheng, Haihong, Xu, Yishu, Ma, Ru, Gao, Dingli, Zhang, Fuzhi.
2021.
Detecting group shilling attacks in recommender systems based on maximum dense subtensor mining. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :644—648.
Existing group shilling attack detection methods mainly depend on human feature engineering to extract group attack behavior features, which requires a high knowledge cost. To address this problem, we propose a group shilling attack detection method based on maximum density subtensor mining. First, the rating time series of each item is divided into time windows and the item tensor groups are generated by establishing the user-rating-time window data models of three-dimensional tensor. Second, the M-Zoom model is applied to mine the maximum dense subtensor of each item, and the subtensor groups with high consistency of behaviors are selected as candidate groups. Finally, a dual-input convolutional neural network model is designed to automatically extract features for the classification of real users and group attack users. The experimental results on the Amazon and Netflix datasets show the effectiveness of the proposed method.
Yuan, Rui, Wang, Xinna, Xu, Jiangmin, Meng, Shunmei.
2021.
A Differential-Privacy-based hybrid collaborative recommendation method with factorization and regression. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :389—396.
Recommender systems have been proved to be effective techniques to provide users with better experiences. However, when a recommender knows the user's preference characteristics or gets their sensitive information, then a series of privacy concerns are raised. A amount of solutions in the literature have been proposed to enhance privacy protection degree of recommender systems. Although the existing solutions have enhanced the protection, they led to a decrease in recommendation accuracy simultaneously. In this paper, we propose a security-aware hybrid recommendation method by combining the factorization and regression techniques. Specifically, the differential privacy mechanism is integrated into data pre-processing for data encryption. Firstly data are perturbed to satisfy differential privacy and transported to the recommender. Then the recommender calculates the aggregated data. However, applying differential privacy raises utility issues of low recommendation accuracy, meanwhile the use of a single model may cause overfitting. In order to tackle this challenge, we adopt a fusion prediction model by combining linear regression (LR) and matrix factorization (MF) for collaborative recommendation. With the MovieLens dataset, we evaluate the recommendation accuracy and regression of our recommender system and demonstrate that our system performs better than the existing recommender system under privacy requirement.
Wang, Shilei, Wang, Hui, Yu, Hongtao, Zhang, Fuzhi.
2021.
Detecting shilling groups in recommender systems based on hierarchical topic model. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :832—837.
In a group shilling attack, attackers work collaboratively to inject fake profiles aiming to obtain desired recommendation result. This type of attacks is more harmful to recommender systems than individual shilling attacks. Previous studies pay much attention to detect individual attackers, and little work has been done on the detection of shilling groups. In this work, we introduce a topic modeling method of natural language processing into shilling attack detection and propose a shilling group detection method on the basis of hierarchical topic model. First, we model the given dataset to a series of user rating documents and use the hierarchical topic model to learn the specific topic distributions of each user from these rating documents to describe user rating behaviors. Second, we divide candidate groups based on rating value and rating time which are not involved in the hierarchical topic model. Lastly, we calculate group suspicious degrees in accordance with several indicators calculated through the analysis of user rating distributions, and use the k-means clustering algorithm to distinguish shilling groups. The experimental results on the Netflix and Amazon datasets show that the proposed approach performs better than baseline methods.