Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2020-01-20
Musca, Constantin, Mirica, Emma, Deaconescu, Razvan.  2013.  Detecting and Analyzing Zero-Day Attacks Using Honeypots. 2013 19th International Conference on Control Systems and Computer Science. :543–548.

Computer networks are overwhelmed by self propagating malware (worms, viruses, trojans). Although the number of security vulnerabilities grows every day, not the same thing can be said about the number of defense methods. But the most delicate problem in the information security domain remains detecting unknown attacks known as zero-day attacks. This paper presents methods for isolating the malicious traffic by using a honeypot system and analyzing it in order to automatically generate attack signatures for the Snort intrusion detection/prevention system. The honeypot is deployed as a virtual machine and its job is to log as much information as it can about the attacks. Then, using a protected machine, the logs are collected remotely, through a safe connection, for analysis. The challenge is to mitigate the risk we are exposed to and at the same time search for unknown attacks.

Nicho, Mathew, McDermott, Christopher D..  2019.  Dimensions of ‘Socio’ Vulnerabilities of Advanced Persistent Threats. 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–5.
Advanced Persistent Threats (APT) are highly targeted and sophisticated multi-stage attacks, utilizing zero day or near zero-day malware. Directed at internetworked computer users in the workplace, their growth and prevalence can be attributed to both socio (human) and technical (system weaknesses and inadequate cyber defenses) vulnerabilities. While many APT attacks incorporate a blend of socio-technical vulnerabilities, academic research and reported incidents largely depict the user as the prominent contributing factor that can weaken the layers of technical security in an organization. In this paper, our objective is to explore multiple dimensions of socio factors (non-technical vulnerabilities) that contribute to the success of APT attacks in organizations. Expert interviews were conducted with senior managers, working in government and private organizations in the United Arab Emirates (UAE) over a period of four years (2014 to 2017). Contrary to common belief that socio factors derive predominately from user behavior, our study revealed two new dimensions of socio vulnerabilities, namely the role of organizational management, and environmental factors which also contribute to the success of APT attacks. We show that the three dimensions postulated in this study can assist Managers and IT personnel in organizations to implement an appropriate mix of socio-technical countermeasures for APT threats.
Elisa, Noe, Yang, Longzhi, Fu, Xin, Naik, Nitin.  2019.  Dendritic Cell Algorithm Enhancement Using Fuzzy Inference System for Network Intrusion Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.

Dendritic cell algorithm (DCA) is an immune-inspired classification algorithm which is developed for the purpose of anomaly detection in computer networks. The DCA uses a weighted function in its context detection phase to process three categories of input signals including safe, danger and pathogenic associated molecular pattern to three output context values termed as co-stimulatory, mature and semi-mature, which are then used to perform classification. The weighted function used by the DCA requires either manually pre-defined weights usually provided by the immunologists, or empirically derived weights from the training dataset. Neither of these is sufficiently flexible to work with different datasets to produce optimum classification result. To address such limitation, this work proposes an approach for computing the three output context values of the DCA by employing the recently proposed TSK+ fuzzy inference system, such that the weights are always optimal for the provided data set regarding a specific application. The proposed approach was validated and evaluated by applying it to the two popular datasets KDD99 and UNSW NB15. The results from the experiments demonstrate that, the proposed approach outperforms the conventional DCA in terms of classification accuracy.

Wang, Qihua, Lv, Gaoyan, Sun, Xiuling.  2019.  Distributed Access Control with Outsourced Computation in Fog Computing. 2019 Chinese Control And Decision Conference (CCDC). :2446–2450.

With the rapid development of Internet of things (IOT) and big data, the number of network terminal devices and big data transmission are increasing rapidly. Traditional cloud computing faces a great challenge in dealing with this massive amount of data. Fog computing which extends the computing at the edge of the network can provide computation and data storage. Attribute based-encryption can effectively achieve the fine-grained access control. However, the computational complexity of the encryption and decryption is growing linearly with the increase of the number of attributes. In order to reduce the computational cost and guarantee the confidentiality of data, distributed access control with outsourced computation in fog computing is proposed in this paper. In our proposed scheme, fog device takes most of computational cost in encryption and decryption phase. The computational cost of the receiver and sender can be reduced. Moreover, the private key of the user is generated by multi-authority which can enhance the security of data. The analysis of security and performance shows that our proposed scheme proves to be effective and secure.

2020-01-13
Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
Kabiri, Peyman, Chavoshi, Mahdieh.  2019.  Destructive Attacks Detection and Response System for Physical Devices in Cyber-Physical Systems. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–6.

Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.

Seidel, Felix, Krentz, Konrad-Felix, Meinel, Christoph.  2019.  Deep En-Route Filtering of Constrained Application Protocol (CoAP) Messages on 6LoWPAN Border Routers. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :201–206.
Devices on the Internet of Things (IoT) are usually battery-powered and have limited resources. Hence, energy-efficient and lightweight protocols were designed for IoT devices, such as the popular Constrained Application Protocol (CoAP). Yet, CoAP itself does not include any defenses against denial-of-sleep attacks, which are attacks that aim at depriving victim devices of entering low-power sleep modes. For example, a denial-of-sleep attack against an IoT device that runs a CoAP server is to send plenty of CoAP messages to it, thereby forcing the IoT device to expend energy for receiving and processing these CoAP messages. All current security solutions for CoAP, namely Datagram Transport Layer Security (DTLS), IPsec, and OSCORE, fail to prevent such attacks. To fill this gap, Seitz et al. proposed a method for filtering out inauthentic and replayed CoAP messages "en-route" on 6LoWPAN border routers. In this paper, we expand on Seitz et al.'s proposal in two ways. First, we revise Seitz et al.'s software architecture so that 6LoWPAN border routers can not only check the authenticity and freshness of CoAP messages, but can also perform a wide range of further checks. Second, we propose a couple of such further checks, which, as compared to Seitz et al.'s original checks, more reliably protect IoT devices that run CoAP servers from remote denial-of-sleep attacks, as well as from remote exploits. We prototyped our solution and successfully tested its compatibility with Contiki-NG's CoAP implementation.
Guanyu, Chen, Yunjie, Han, Chang, Li, Changrui, Lin, Degui, Fang, Xiaohui, Rong.  2019.  Data Acquisition Network and Application System Based on 6LoWPAN and IPv6 Transition Technology. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :78–83.
In recent years, IPv6 will gradually replace IPv4 with IPv4 address exhaustion and the rapid development of the Low-Power Wide-Area network (LPWAN) wireless communication technology. This paper proposes a data acquisition and application system based on 6LoWPAN and IPv6 transition technology. The system uses 6LoWPAN and 6to4 tunnel to realize integration of the internal sensor network and Internet to improve the adaptability of the gateway and reduce the average forwarding delay and packet loss rate of small data packet. Moreover, we design and implement the functions of device access management, multiservice data storage and affair data service by combining the C/S architecture with the actual uploaded river quality data. The system has the advantages of flexible networking, low power consumption, rich IPv6 address, high communication security, and strong reusability.
2020-01-07
Radhakrishnan, Vijayanand, Durairaj, Devaraj, Balasubramanian, Kannapiran, Kamatchi, Kartheeban.  2019.  Development Of A Novel Security Scheme Using DNA Biocryptography For Smart Meter Data Communication. 2019 3rd International Conference on Computing and Communications Technologies (ICCCT). :237-244.

Data security is a major requirement of smart meter communication to control server through Advanced Metering infrastructure. Easy access of smart meters and multi-faceted nature of AMI communication network are the main reasons of smart meter facing large number of attacks. The different topology, bandwidth and heterogeneity in communication network prevent the existing security mechanisms in satisfying the security requirements of smart meter. Hence, advanced security mechanisms are essential to encrypt smart meter data before transmitting to control server. The emerging biocryptography technique has several advantages over existing techniques and is most suitable for providing security to communication of low processing devices like smart meter. In this paper, a lightweight encryption scheme using DNA sequence with suitable key management scheme is proposed for secure communication of smart meter in an efficient way. The proposed 2-phase DNA cryptography provides confidentiality and integrity to transmitted data and the authentication of keys is attained by exchanging through Diffie Hellman scheme. The strength of proposed encryption scheme is analyzed and its efficiency is evaluated by simulating an AMI communication network using Simulink/Matlab. Comparison of simulation results with various techniques show that the proposed scheme is suitable for secure communication of smart meter data.

Sadkhan, Sattar B., Yaseen, Basim S..  2018.  A DNA-Sticker Algorithm for Cryptanalysis LFSRs and NLFSRs Based Stream Cipher. 2018 International Conference on Advanced Science and Engineering (ICOASE). :301-305.
In this paper, We propose DNA sticker model based algorithm, a computability model, which is a simulation of the parallel computations using the Molecular computing as in Adelman's DNA computing experiment, it demonstrates how to use a sticker-based model to design a simple DNA-based algorithm for attacking a linear and a non-linear feedback shift register (FSR) based stream cipher. The algorithm first construct the TEST TUBE contains all overall solution space of memory complexes for the cipher and initials of registers via the sticker-based model. Then, with biological operations, separate and combine, we remove those which encode illegal plain and key stream from the TEST TUBE of memory complexes, the decision based on verifying a key stream bit this bit represented by output of LFSRs equation. The model anticipates two basic groups of single stranded DNA molecules in its representation one of a genetic bases and second of a bit string, It invests parallel search into the space of solutions through the possibilities of DNA computing and makes use of the method of cryptanalysis of algebraic code as a decision technique to accept the solution or not, and their operations are repeated until one solution or limited group of solutions is reached. The main advantages of the suggested algorithm are limited number of cipher characters, and finding one exact solution The present work concentrates on showing the applicability of DNA computing concepts as a powerful tool in breaking cryptographic systems.
P.G., Swathi, Rajesh, Sreeja.  2018.  Double Encryption Using TEA and DNA. 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). :1-5.
Information security has become a major challenge in data transmission. Data transmitted through the network is vulnerable to many passive and active attacks. Cryptographic algorithms provide security against the data intruders and provide secure network communication. In this method, two algorithms TEA and DNA are combined to form a new algorithm called DETD (Double Encryption using TEA and DNA). The algorithm mainly deals with encryption and decryption time of a given input text. Here, both the encryption and decryption time are compared with the other two algorithms and the results are recorded. This algorithm also aims to provide data security by increasing the levels of encryption.
Akiwate, Bahubali, Parthiban, Latha.  2018.  A Dynamic DNA for Key-Based Cryptography. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS). :223-227.

A dynamic DNA for key-based Cryptography that encrypt and decrypt plain text characters, text file, image file and audio file using DNA sequences. Cryptography is always taken as the secure way while transforming the confidential information over the network such as LAN, Internet. But over the time, the traditional cryptographic approaches are been replaced with more effective cryptographic systems such as Quantum Cryptography, Biometric Cryptography, Geographical Cryptography and DNA Cryptography. This approach accepts the DNA sequences as the input to generate the key that going to provide two stages of data security.

2020-01-06
Winderickx, Jori, Braeken, An, Singelée, Dave, Peeters, Roel, Vandenryt, Thijs, Thoelen, Ronald, Mentens, Nele.  2018.  Digital Signatures and Signcryption Schemes on Embedded Devices: A Trade-off Between Computation and Storage. Proceedings of the 15th ACM International Conference on Computing Frontiers. :342–347.
This paper targets the efficient implementation of digital signatures and signcryption schemes on typical internet-of-things (IoT) devices, i.e. embedded processors with constrained computation power and storage. Both signcryption schemes (providing digital signatures and encryption simultaneously) and digital signatures rely on computation-intensive public-key cryptography. When the number of signatures or encrypted messages the device needs to generate after deployment is limited, a trade-off can be made between performing the entire computation on the embedded device or moving part of the computation to a precomputation phase. The latter results in the storage of the precomputed values in the memory of the processor. We examine this trade-off on a health sensor platform and we additionally apply storage encryption, resulting in five implementation variants of the considered schemes.
Mo, Ran, Liu, Jianfeng, Yu, Wentao, Jiang, Fu, Gu, Xin, Zhao, Xiaoshuai, Liu, Weirong, Peng, Jun.  2019.  A Differential Privacy-Based Protecting Data Preprocessing Method for Big Data Mining. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :693–699.

Analyzing clustering results may lead to the privacy disclosure issue in big data mining. In this paper, we put forward a differential privacy-based protecting data preprocessing method for distance-based clustering. Firstly, the data distortion technique differential privacy is used to prevent the distances in distance-based clustering from disclosing the relationships. Differential privacy may affect the clustering results while protecting privacy. Then an adaptive privacy budget parameter adjustment mechanism is applied for keeping the balance between the privacy protection and the clustering results. By solving the maximum and minimum problems, the differential privacy budget parameter can be obtained for different clustering algorithms. Finally, we conduct extensive experiments to evaluate the performance of our proposed method. The results demonstrate that our method can provide privacy protection with precise clustering results.

2020-01-02
Trotter, Ludwig, Prange, Sarah, Khamis, Mohamed, Davies, Nigel, Alt, Florian.  2018.  Design Considerations for Secure and Usable Authentication on Situated Displays. Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia. :483–490.
Users often need to authenticate at situated displays in order to, for example, make purchases, access sensitive information, or confirm an identity. However, the exposure of interactions in public spaces introduces a large attack surface (e.g., observation, smudge or thermal attacks). A plethora of authentication models and input modalities that aim at disguising users' input has been presented in the past. However, a comprehensive analysis on the requirements for secure and usable authentication on public displays is still missing. This work presents 13 design considerations suitable to inform practitioners and researchers during the development process of authentication systems for situated displays in public spaces. It draws on a comprehensive analysis of prior literature and subsequent discussion with five experts in the fields of pervasive displays, human-computer-interaction and usable security.
Mar\'ın, Gonzalo, Casas, Pedro, Capdehourat, Germán.  2019.  Deep in the Dark - Deep Learning-Based Malware Traffic Detection Without Expert Knowledge. 2019 IEEE Security and Privacy Workshops (SPW). :36–42.

With the ever-growing occurrence of networking attacks, robust network security systems are essential to prevent and mitigate their harming effects. In recent years, machine learning-based systems have gain popularity for network security applications, usually considering the application of shallow models, where a set of expert handcrafted features are needed to pre-process the data before training. The main problem with this approach is that handcrafted features can fail to perform well given different kinds of scenarios and problems. Deep Learning models can solve this kind of issues using their ability to learn feature representations from input raw or basic, non-processed data. In this paper we explore the power of deep learning models on the specific problem of detection and classification of malware network traffic, using different representations for the input data. As a major advantage as compared to the state of the art, we consider raw measurements coming directly from the stream of monitored bytes as the input to the proposed models, and evaluate different raw-traffic feature representations, including packet and flow-level ones. Our results suggest that deep learning models can better capture the underlying statistics of malicious traffic as compared to classical, shallow-like models, even while operating in the dark, i.e., without any sort of expert handcrafted inputs.

2019-12-30
Kubo, Ryogo.  2018.  Detection and Mitigation of False Data Injection Attacks for Secure Interactive Networked Control Systems. 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR). :7-12.

Cybersecurity in control systems has been actively discussed in recent years. In particular, networked control systems (NCSs) over the Internet are exposed to various types of cyberattacks such as false data injection attacks. This paper proposes a detection and mitigation method of the false data injection attacks in interactive NCSs, i.e., bilateral teleoperation systems. A bilateral teleoperation system exchanges position and force information through the Internet between the master and slave robots. The proposed method utilizes two redundant communication channels for both the master-to-slave and slave-to-master paths. The attacks are detected by a tamper detection observer (TDO) on each of the master and slave sides. The TDO compares the position responses of actual robots and robot models. A path selector on each side chooses the appropriate position and force responses from the responses received through the two communication channels, based on the outputs of the TDO. The proposed method is validated by simulations with attack models.

Tariq, Mahak, Khan, Mashal, Fatima, Sana.  2018.  Detection of False Data in Wireless Sensor Network Using Hash Chain. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :126-129.

Wireless Sensor Network (WSN) is often to consist of adhoc devices that have low power, limited memory and computational power. WSN is deployed in hostile environment, due to which attacker can inject false data easily. Due to distributed nature of WSN, adversary can easily inject the bogus data into the network because sensor nodes don't ensure data integrity and not have strong authentication mechanism. This paper reviews and analyze the performance of some of the existing false data filtering schemes and propose new scheme to identify the false data injected by adversary or compromised node. Proposed schemes shown better and efficiently filtrate the false data in comparison with existing schemes.

Dai, Ting, He, Jingzhu, Gu, Xiaohui, Lu, Shan, Wang, Peipei.  2018.  DScope: Detecting Real-World Data Corruption Hang Bugs in Cloud Server Systems. Proceedings of the ACM Symposium on Cloud Computing. :313-325.

Cloud server systems such as Hadoop and Cassandra have enabled many real-world data-intensive applications running inside computing clouds. However, those systems present many data-corruption and performance problems which are notoriously difficult to debug due to the lack of diagnosis information. In this paper, we present DScope, a tool that statically detects data-corruption related software hang bugs in cloud server systems. DScope statically analyzes I/O operations and loops in a software package, and identifies loops whose exit conditions can be affected by I/O operations through returned data, returned error code, or I/O exception handling. After identifying those loops which are prone to hang problems under data corruption, DScope conducts loop bound and loop stride analysis to prune out false positives. We have implemented DScope and evaluated it using 9 common cloud server systems. Our results show that DScope can detect 42 real software hang bugs including 29 newly discovered software hang bugs. In contrast, existing bug detection tools miss detecting most of those bugs.

Yang, Yang, Chang, Xiaolin, Han, Zhen, Li, Lin.  2018.  Delay-Aware Secure Computation Offloading Mechanism in a Fog-Cloud Framework. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :346–353.
Fog-Cloud framework is being regarded as a more promising technology to provide performance guarantee for IoT applications, which not only have higher requirements on computation resources, but also are delay and/or security sensitive. In this framework, a delay and security-sensitive computation task is usually divided into several sub-tasks, which could be offloaded to either fog or cloud computing servers, referred to as offloading destinations. Sub-tasks may exchange information during their processing and then have requirement on transmission bandwidth. Different destinations produce different completion delays of a sub-task, affecting the corresponding task delay. The existing offloading approaches either considered only a single type of offloading destinations or ignored delay and/or security constraint. This paper studies a computation offloading problem in the fog-cloud scenario where not only computation and security capabilities of offloading destinations may be different, but also bandwidth and delay of links may be different. We first propose a joint offloading approach by formulating the problem as a form of Mixed Integer Programming Multi-Commodity Flow to maximize the fog-cloud provider's revenue without sacrificing performance and security requirements of users. We also propose a greedy algorithm for the problem. Extensive simulation results under various network scales show that the proposed computation offloading mechanism achieves higher revenue than the conventional single-type computation offloading under delay and security constraints.
Kim, Sunbin, Kim, Hyeoncheol.  2019.  Deep Explanation Model for Facial Expression Recognition Through Facial Action Coding Unit. 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). :1–4.
Facial expression is the most powerful and natural non-verbal emotional communication method. Facial Expression Recognition(FER) has significance in machine learning tasks. Deep Learning models perform well in FER tasks, but it doesn't provide any justification for its decisions. Based on the hypothesis that facial expression is a combination of facial muscle movements, we find that Facial Action Coding Units(AUs) and Emotion label have a relationship in CK+ Dataset. In this paper, we propose a model which utilises AUs to explain Convolutional Neural Network(CNN) model's classification results. The CNN model is trained with CK+ Dataset and classifies emotion based on extracted features. Explanation model classifies the multiple AUs with the extracted features and emotion classes from the CNN model. Our experiment shows that with only features and emotion classes obtained from the CNN model, Explanation model generates AUs very well.
2019-12-18
Shafi, Qaisar, Basit, Abdul.  2019.  DDoS Botnet Prevention Using Blockchain in Software Defined Internet of Things. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :624-628.

Distributed Denial of Service (DDoS) attacks have two defense perspectives firstly, to defend your network, resources and other information assets from this disastrous attack. Secondly, to prevent your network to be the part of botnet (botforce) bondage to launch attacks on other networks and resources mainly be controlled from a control center. This work focuses on the development of a botnet prevention system for Internet of Things (IoT) that uses the benefits of both Software Defined Networking (SDN) and Distributed Blockchain (DBC). We simulate and analyze that using blockchain and SDN, how can detect and mitigate botnets and prevent our devices to play into the hands of attackers.

Guleria, Akshit, Kalra, Evneet, Gupta, Kunal.  2019.  Detection and Prevention of DoS Attacks on Network Systems. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :544-548.

Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.

Chugunkov, Ilya V., Fedorov, Leonid O., Achmiz, Bela Sh., Sayfullina, Zarina R..  2018.  Development of the Algorithm for Protection against DDoS-Attacks of Type Pulse Wave. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :292-294.

Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.

Mustapha, Hanan, Alghamdi, Ahmed M.  2018.  DDoS Attacks on the Internet of Things and Their Prevention Methods. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :4:1-4:5.

The Internet of Things (IoT) vulnerabilities provides an ideal target for botnets, making them a major contributor in the increased number of Distributed Denial of Service (DDoS) attacks. The increase in DDoS attacks has made it important to address the consequences it implies on the IoT industry being one of the major causes. The aim of this paper is to provide an analysis of the attempts to prevent DDoS attacks, mainly at a network level. The sensibility of these solutions is extracted from their impact in resolving IoT vulnerabilities. It is evident from this review that there is no perfect solution yet for IoT security, this field still has many opportunities for research and development.