Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2019-08-05
Kaur, Gurpreet, Malik, Yasir, Samuel, Hamman, Jaafar, Fehmi.  2018.  Detecting Blind Cross-Site Scripting Attacks Using Machine Learning. Proceedings of the 2018 International Conference on Signal Processing and Machine Learning. :22–25.

Cross-site scripting (XSS) is a scripting attack targeting web applications by injecting malicious scripts into web pages. Blind XSS is a subset of stored XSS, where an attacker blindly deploys malicious payloads in web pages that are stored in a persistent manner on target servers. Most of the XSS detection techniques used to detect the XSS vulnerabilities are inadequate to detect blind XSS attacks. In this research, we present machine learning based approach to detect blind XSS attacks. Testing results help to identify malicious payloads that are likely to get stored in databases through web applications.

Francalino, Wagner, Callado, Arthur de Castro, Jucá, Paulyne Matthews.  2018.  Defining and Implementing a Test Automation Strategy in an IT Company. Proceedings of the Euro American Conference on Telematics and Information Systems. :40:1–40:5.
Software testing is very important for software quality assurance. However, the test activity is not a simple task and requires good planning to be successful. It is in this context that the automation of tests gains importance. This paper presents the experience of defining and implementing a test automation strategy for functional tests based on the Brazilian Test Process Improvement Model (MPT.Br) in an IT company. The results of this work include the improvement of the testing process used by the company, the increase in the test coverage and the reduction of time used to perform regression tests.
Sen, Amartya, Madria, Sanjay.  2018.  Data Analysis of Cloud Security Alliance's Security, Trust & Assurance Registry. Proceedings of the 19th International Conference on Distributed Computing and Networking. :42:1–42:10.
The security of clients' applications on the cloud platforms has been of great interest. Security concerns associated with cloud computing are improving in both the domains; security issues faced by cloud providers and security issues faced by clients. However, security concerns still remain in domains like cloud auditing and migrating application components to cloud to make the process more secure and cost-efficient. To an extent, this can be attributed to a lack of detailed information being publicly present about the cloud platforms and their security policies. A resolution in this regard can be found in Cloud Security Alliance's Security, Trust, and Assurance Registry (STAR) which documents the security controls provided by popular cloud computing offerings. In this paper, we perform some descriptive analysis on STAR data in an attempt to comprehend the information publicly presented by different cloud providers. It is to help clients in more effectively searching and analyzing the required security information they need for the decision making process for hosting their applications on cloud. Based on the analysis, we outline some augmentations that can be made to STAR as well as certain specific design improvements for a cloud migration risk assessment framework.
2019-07-01
Kumar, S., Gaur, N., Kumar, A..  2018.  Developing a Secure Cyber Ecosystem for SCADA Architecture. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :559–562.

Advent of Cyber has converted the entire World into a Global village. But, due to vurneabilites in SCADA architecture [1] national assests are more prone to cyber attacks.. Cyber invasions have a catastrophic effect in the minds of the civilian population, in terms of states security system. A robust cyber security is need of the hour to protect the critical information infastructrue & critical infrastructure of a country. Here, in this paper we scrutinize cyber terrorism, vurneabilites in SCADA network systems [1], [2] and concept of cyber resilience to combat cyber attacks.

Senthivel, Saranyan, Dhungana, Shrey, Yoo, Hyunguk, Ahmed, Irfan, Roussev, Vassil.  2018.  Denial of Engineering Operations Attacks in Industrial Control Systems. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :319–329.
We present a new type of attack termed denial of engineering operations in which an attacker can interfere with the normal cycle of an engineering operation leading to a loss of situational awareness. Specifically, the attacker can deceive the engineering software during attempts to retrieve the ladder logic program from a programmable logic controller (PLC) by manipulating the ladder logic on the PLC, such that the software is unable to process it while the PLC continues to execute it successfully. This attack vector can provide sufficient cover for the attacker»s actual scenario to play out while the owner tries to understand the problem and reestablish positive operational control. To enable the forensic analysis and, eventually, eliminate the threat, we have developed the first decompiler for ladder logic programs. Ladder logic is a graphical programming language for PLCs that control physical processes such as power grid, pipelines, and chemical plants; PLCs are a common target of malicious modifications leading to the compromise of the control behavior (and potentially serious consequences). Our decompiler, Laddis, transforms a low-level representation to its corresponding high-level original representation comprising of graphical symbols and connections. The evaluation of the accuracy of the decompiler on the program of varying complexity demonstrates perfect reconstruction of the original program. We present three new attack scenarios on PLC-deployed ladder logic and demonstrate the effectiveness of the decompiler on these scenarios.
Ammar, Zakariya, AlSharif, Ahmad.  2018.  Deployment of IoT-based Honeynet Model. Proceedings of the 6th International Conference on Information Technology: IoT and Smart City. :134–139.
This paper deals with the developing model of a honeynet that depends on the Internet of things (IoT). Due to significant of industrial services, such model helps enhancement of information security detection in industrial domain, the model is designed to detect adversaries whom attempt to attack industrial control systems (ICS) and supervisory control and data acquisition (SCADA) systems. The model consists of hardware and software aspects, designed to focus on ICS services that managed remotely via SCADA systems. In order to prove the work of the model, a few of security tools are used such as Shodan, Nmap and others. These tools have been applied locally inside LAN and globally via internet to get proving results. Ultimately, results contain a list of protocols and ports that represent industry control services. To clarify outputs, it contains tcp/udp ports 623, 102, 1025 and 161 which represent respectively IPMI, S7comm, KAMSTRAP and SNMP services.
Napoli, Daniela.  2018.  Developing Accessible and Usable Security (ACCUS) Heuristics. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :SRC16:1-SRC16:6.

Currently, usable security and web accessibility design principles exist separately. Although literature at the intersect of accessibility and security is developing, it is limited in its understanding of how users with vision loss operate the web securely. In this paper, we propose heuristics that fuse the nuances of both fields. With these heuristics, we evaluate 10 websites and uncover several issues that can impede users' ability to abide by common security advice.

2019-06-24
Bessa, Ricardo J., Rua, David, Abreu, Cláudia, Machado, Paulo, Andrade, José R., Pinto, Rui, Gonçalves, Carla, Reis, Marisa.  2018.  Data Economy for Prosumers in a Smart Grid Ecosystem. Proceedings of the Ninth International Conference on Future Energy Systems. :622–630.

Smart grids technologies are enablers of new business models for domestic consumers with local flexibility (generation, loads, storage) and where access to data is a key requirement in the value stream. However, legislation on personal data privacy and protection imposes the need to develop local models for flexibility modeling and forecasting and exchange models instead of personal data. This paper describes the functional architecture of an home energy management system (HEMS) and its optimization functions. A set of data-driven models, embedded in the HEMS, are discussed for improving renewable energy forecasting skill and modeling multi-period flexibility of distributed energy resources.

Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.

Qbeitah, M. A., Aldwairi, M..  2018.  Dynamic malware analysis of phishing emails. 2018 9th International Conference on Information and Communication Systems (ICICS). :18–24.

Malicious software or malware is one of the most significant dangers facing the Internet today. In the fight against malware, users depend on anti-malware and anti-virus products to proactively detect threats before damage is done. Those products rely on static signatures obtained through malware analysis. Unfortunately, malware authors are always one step ahead in avoiding detection. This research deals with dynamic malware analysis, which emphasizes on: how the malware will behave after execution, what changes to the operating system, registry and network communication take place. Dynamic analysis opens up the doors for automatic generation of anomaly and active signatures based on the new malware's behavior. The research includes a design of honeypot to capture new malware and a complete dynamic analysis laboratory setting. We propose a standard analysis methodology by preparing the analysis tools, then running the malicious samples in a controlled environment to investigate their behavior. We analyze 173 recent Phishing emails and 45 SPIM messages in search for potentially new malwares, we present two malware samples and their comprehensive dynamic analysis.

2019-06-17
Rouhani, Bita Darvish, Riazi, M. Sadegh, Koushanfar, Farinaz.  2018.  Deepsecure: Scalable Provably-secure Deep Learning. Proceedings of the 55th Annual Design Automation Conference. :2:1–2:6.
This paper presents DeepSecure, the an scalable and provably secure Deep Learning (DL) framework that is built upon automated design, efficient logic synthesis, and optimization methodologies. DeepSecure targets scenarios in which neither of the involved parties including the cloud servers that hold the DL model parameters or the delegating clients who own the data is willing to reveal their information. Our framework is the first to empower accurate and scalable DL analysis of data generated by distributed clients without sacrificing the security to maintain efficiency. The secure DL computation in DeepSecure is performed using Yao's Garbled Circuit (GC) protocol. We devise GC-optimized realization of various components used in DL. Our optimized implementation achieves up to 58-fold higher throughput per sample compared with the best prior solution. In addition to the optimized GC realization, we introduce a set of novel low-overhead pre-processing techniques which further reduce the GC overall runtime in the context of DL. Our extensive evaluations demonstrate up to two orders-of-magnitude additional runtime improvement achieved as a result of our pre-processing methodology.
Verma, Dinesh, Calo, Seraphin, Cirincione, Greg.  2018.  Distributed AI and Security Issues in Federated Environments. Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking. :4:1–4:6.
Many real-world IoT solutions have to be implemented in a federated environment, which are environments where many different administrative organizations are involved in different parts of the solution. Smarter Cities, Federated Governance, International Trade and Military Coalition Operations are examples of federated environments. As end devices become more capable and intelligent, learning from their environment, and adapting on their own, they expose new types of security vulnerabilities and present an increased attack surface. A distributed AI approach can help mitigate many of the security problems that one may encounter in such federated environments. In this paper, we outline some of the scenarios in which we need to rethink security issues as devices become more intelligent, and discuss how distributed AI techniques can be used to reduce the security exposures in such environments.
2019-06-10
Kargaard, J., Drange, T., Kor, A., Twafik, H., Butterfield, E..  2018.  Defending IT Systems against Intelligent Malware. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :411-417.

The increasing amount of malware variants seen in the wild is causing problems for Antivirus Software vendors, unable to keep up by creating signatures for each. The methods used to develop a signature, static and dynamic analysis, have various limitations. Machine learning has been used by Antivirus vendors to detect malware based on the information gathered from the analysis process. However, adversarial examples can cause machine learning algorithms to miss-classify new data. In this paper we describe a method for malware analysis by converting malware binaries to images and then preparing those images for training within a Generative Adversarial Network. These unsupervised deep neural networks are not susceptible to adversarial examples. The conversion to images from malware binaries should be faster than using dynamic analysis and it would still be possible to link malware families together. Using the Generative Adversarial Network, malware detection could be much more effective and reliable.

Jiang, H., Turki, T., Wang, J. T. L..  2018.  DLGraph: Malware Detection Using Deep Learning and Graph Embedding. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). :1029-1033.

In this paper we present a new approach, named DLGraph, for malware detection using deep learning and graph embedding. DLGraph employs two stacked denoising autoencoders (SDAs) for representation learning, taking into consideration computer programs' function-call graphs and Windows application programming interface (API) calls. Given a program, we first use a graph embedding technique that maps the program's function-call graph to a vector in a low-dimensional feature space. One SDA in our deep learning model is used to learn a latent representation of the embedded vector of the function-call graph. The other SDA in our model is used to learn a latent representation of the given program's Windows API calls. The two learned latent representations are then merged to form a combined feature vector. Finally, we use softmax regression to classify the combined feature vector for predicting whether the given program is malware or not. Experimental results based on different datasets demonstrate the effectiveness of the proposed approach and its superiority over a related method.

Vaseer, G., Ghai, G., Ghai, D..  2018.  Distributed Trust-Based Multiple Attack Prevention for Secure MANETs. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :108–113.

Mobile ad hoc networks (MANETs) are self-configuring, dynamic networks in which nodes are free to move. These nodes are susceptible to various malicious attacks. In this paper, we propose a distributed trust-based security scheme to prevent multiple attacks such as Probe, Denial-of-Service (DoS), Vampire, User-to-Root (U2R) occurring simultaneously. We report above 95% accuracy in data transmission and reception by applying the proposed scheme. The simulation has been carried out using network simulator ns-2 in a AODV routing protocol environment. To the best of the authors' knowledge, this is the first work reporting a distributed trust-based prevention scheme for preventing multiple attacks. We also check the scalability of the technique using variable node densities in the network.

Hmouda, E., Li, W..  2018.  Detection and Prevention of Attacks in MANETs by Improving the EAACK Protocol. SoutheastCon 2018. :1–7.

Mobile Ad Hoc Networks are dynamic in nature and have no rigid or reliable network infrastructure by their very definition. They are expected to be self-governed and have dynamic wireless links which are not entirely reliable in terms of connectivity and security. Several factors could cause their degradation, such as attacks by malicious and selfish nodes which result in data carrying packets being dropped which in turn could cause breaks in communication between nodes in the network. This paper aims to address the issue of remedy and mitigation of the damage caused by packet drops. We proposed an improvement on the EAACK protocol to reduce the network overhead packet delivery ratio by using hybrid cryptography techniques DES due to its higher efficiency in block encryption, and RSA due to its management in key cipher. Comparing to the existing approaches, our simulated results show that hybrid cryptography techniques provide higher malicious behavior detection rates, and improve the performance. This research can also lead to more future efforts in using hybrid encryption based authentication techniques for attack detection/prevention in MANETs.

2019-05-20
Morris, Alexis, Lessio, Nadine.  2018.  Deriving Privacy and Security Considerations for CORE: An Indoor IoT Adaptive Context Environment. Proceedings of the 2Nd International Workshop on Multimedia Privacy and Security. :2–11.
The internet-of-things (IoT) consists of embedded devices and their networks of communication as they form decentralized frameworks of ubiquitous computing services. Within such decentralized systems the potential for malicious actors to impact the system is significant, with far-reaching consequences. Hence this work addresses the challenge of providing IoT systems engineers with a framework to elicit privacy and security design considerations, specifically for indoor adaptive smart environments. It introduces a new ambient intelligence indoor adaptive environment framework (CORE) which leverages multiple forms of data, and aims to elicit the privacy and security needs of this representative system. This contributes both a new adaptive IoT framework, but also an approach to systematically derive privacy and security design requirements via a combined and modified OCTAVE-Allegro and Privacy-by-Design methodology. This process also informs the future developments and evaluations of the CORE system, toward engineering more secure and private IoT systems.
2019-05-09
Kravchik, Moshe, Shabtai, Asaf.  2018.  Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks. Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy. :72-83.

This paper presents a study on detecting cyber attacks on industrial control systems (ICS) using convolutional neural networks. The study was performed on a Secure Water Treatment testbed (SWaT) dataset, which represents a scaled-down version of a real-world industrial water treatment plant. We suggest a method for anomaly detection based on measuring the statistical deviation of the predicted value from the observed value. We applied the proposed method by using a variety of deep neural network architectures including different variants of convolutional and recurrent networks. The test dataset included 36 different cyber attacks. The proposed method successfully detected 31 attacks with three false positives thus improving on previous research based on this dataset. The results of the study show that 1D convolutional networks can be successfully used for anomaly detection in industrial control systems and outperform recurrent networks in this setting. The findings also suggest that 1D convolutional networks are effective at time series prediction tasks which are traditionally considered to be best solved using recurrent neural networks. This observation is a promising one, as 1D convolutional neural networks are simpler, smaller, and faster than the recurrent neural networks.

Nguyen, Thuy D., Irvine, Cynthia E..  2018.  Development of Industrial Network Forensics Lessons. Proceedings of the Fifth Cybersecurity Symposium. :7:1-7:5.

Most forensic investigators are trained to recognize abusive network behavior in conventional information systems, but they may not know how to detect anomalous traffic patterns in industrial control systems (ICS) that manage critical infrastructure services. We have developed and laboratory-tested hands-on teaching material to introduce students to forensics investigation of intrusions on an industrial network. Rather than using prototypes of ICS components, our approach utilizes commercial industrial products to provide students a more realistic simulation of an ICS network. The lessons cover four different types of attacks and the corresponding post-incident network data analysis.

2019-05-08
Meng, F., Lou, F., Fu, Y., Tian, Z..  2018.  Deep Learning Based Attribute Classification Insider Threat Detection for Data Security. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :576–581.

With the evolution of network threat, identifying threat from internal is getting more and more difficult. To detect malicious insiders, we move forward a step and propose a novel attribute classification insider threat detection method based on long short term memory recurrent neural networks (LSTM-RNNs). To achieve high detection rate, event aggregator, feature extractor, several attribute classifiers and anomaly calculator are seamlessly integrated into an end-to-end detection framework. Using the CERT insider threat dataset v6.2 and threat detection recall as our performance metric, experimental results validate that the proposed threat detection method greatly outperforms k-Nearest Neighbor, Isolation Forest, Support Vector Machine and Principal Component Analysis based threat detection methods.

Yao, Danfeng(Daphne).  2018.  Data Breach and Multiple Points to Stop It. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :1–1.
Preventing unauthorized access to sensitive data is an exceedingly complex access control problem. In this keynote, I will break down the data breach problem and give insights into how organizations could and should do to reduce their risks. The talk will start with discussing the technical reasons behind some of the recent high-profile data breach incidents (e.g., in Equifax, Target), as well as pointing out the threats of inadvertent or accidental data leaks. Then, I will show that there are usually multiple points to stop data breach and give an overview of the relevant state-of-the-art solutions. I will focus on some of the recent algorithmic advances in preventing inadvertent data loss, including set-based and alignment-based screening techniques, outsourced screening, and GPU-based performance acceleration. I will also briefly discuss the role of non-technical factors (e.g., organizational culture on security) in data protection. Because of the cat-and-mouse-game nature of cybersecurity, achieving absolute data security is impossible. However, proactively securing critical data paths through strategic planning and placement of security tools will help reduce the risks. I will also point out a few exciting future research directions, e.g., on data leak detection as a cloud security service and deep learning for reducing false alarms in continuous authentication and the prickly insider-threat detection.
Chen, Yifang, Kang, Xiangui, Wang, Z. Jane, Zhang, Qiong.  2018.  Densely Connected Convolutional Neural Network for Multi-purpose Image Forensics Under Anti-forensic Attacks. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :91–96.

Multiple-purpose forensics has been attracting increasing attention worldwide. However, most of the existing methods based on hand-crafted features often require domain knowledge and expensive human labour and their performances can be affected by factors such as image size and JPEG compression. Furthermore, many anti-forensic techniques have been applied in practice, making image authentication more difficult. Therefore, it is of great importance to develop methods that can automatically learn general and robust features for image operation detectors with the capability of countering anti-forensics. In this paper, we propose a new convolutional neural network (CNN) approach for multi-purpose detection of image manipulations under anti-forensic attacks. The dense connectivity pattern, which has better parameter efficiency than the traditional pattern, is explored to strengthen the propagation of general features related to image manipulation detection. When compared with three state-of-the-art methods, experiments demonstrate that the proposed CNN architecture can achieve a better performance (i.e., with a 11% improvement in terms of detection accuracy under anti-forensic attacks). The proposed method can also achieve better robustness against JPEG compression with maximum improvement of 13% on accuracy under low-quality JPEG compression.

2019-05-01
Borra, V. S., Debnath, K..  2018.  Dynamic programming for solving unit commitment and security problems in microgrid systems. 2018 IEEE International Conference on Innovative Research and Development (ICIRD). :1–6.

In order to meet the demand of electrical energy by consumers, utilities have to maintain the security of the system. This paper presents a design of the Microgrid Central Energy Management System (MCEMS). It will plan operation of the system one-day advance. The MCEMS will adjust itself during operation if a fault occurs anywhere in the generation system. The proposed approach uses Dynamic Programming (DP) algorithm solves the Unit Commitment (UC) problem and at the same time enhances the security of power system. A case study is performed with ten subsystems. The DP is used to manage the operation of the subsystems and determines the UC on the situation demands. Faults are applied to the system and the DP corrects the UC problem with appropriate power sources to maintain reliability supply. The MATLAB software has been used to simulate the operation of the system.

Jiang, Yikun, Xie, Wei, Tang, Yong.  2018.  Detecting Authentication-Bypass Flaws in a Large Scale of IoT Embedded Web Servers. Proceedings of the 8th International Conference on Communication and Network Security. :56–63.

With the rapid development of network and communication technologies, everything is able to be connected to the Internet. IoT devices, which include home routers, IP cameras, wireless printers and so on, are crucial parts facilitating to build pervasive and ubiquitous networks. As the number of IoT devices around the world increases, the security issues become more and more serious. To handle with the security issues and protect the IoT devices from being compromised, the firmware of devices needs to be strengthened by discovering and repairing vulnerabilities. Current vulnerability detection tools can only help strengthening traditional software, nevertheless these tools are not practical enough for IoT device firmware, because of the peculiarity in firmware's structure and embedded device's architecture. Therefore, new vulnerability detection framework is required for analyzing IoT device firmware. This paper reviews related works on vulnerability detection in IoT firmware, proposes and implements a framework to automatically detect authentication-bypass flaws in a large scale of Linux-based firmware. The proposed framework is evaluated with a data set of 2351 firmware images from several target vendors, which is proved to be capable of performing large-scale and automated analysis on firmware, and 1 known and 10 unknown authentication-bypass flaws are found by the analysis.

Li, J. H., Schafer, D., Whelihan, D., Lassini, S., Evancich, N., Kwak, K. J., Vai, M., Whitman, H..  2018.  Designing Secure and Resilient Embedded Avionics Systems. 2018 IEEE Cybersecurity Development (SecDev). :139–139.

Over the past decade, the reliance on Unmanned Aerial Systems (UAS) to carry out critical missions has grown drastically. With an increased reliance on UAS as mission assets and the dependency of UAS on cyber resources, cyber security of UAS must be improved by adopting sound security principles and relevant technologies from the computing community. On the other hand, the traditional avionics community, being aware of the importance of cyber security, is looking at new architecture and designs that can accommodate both the traditional safety oriented principles as well as the cyber security principles and techniques. It is with the effective and timely convergence of these domains that a holistic approach and co-design can meet the unique requirements of modern systems and operations. In this paper, authors from both the cyber security and avionics domains describe our joint effort and insights obtained during the course of designing secure and resilient embedded avionics systems.