Biblio
Physical Unclonable Functions (PUFs) are vulnerable to various modelling attacks. The chaotic behaviour of oscillating systems can be leveraged to improve their security against these attacks. We have integrated an Arbiter PUF implemented on a FPGA with Chua's oscillator circuit to obtain robust final responses. These responses are tested against conventional Machine Learning and Deep Learning attacks for verifying security of the design. It has been found that such a design is robust with prediction accuracy of nearly 50%. Moreover, the quality of the PUF architecture is evaluated for uniformity and uniqueness metrics and Monte Carlo analysis at varying temperatures is performed for determining reliability.
A database is an organized collection of data. Though a number of techniques, such as encryption and electronic signatures, are currently available for the protection of data when transmitted across sites. Database security refers to the collective measures used to protect and secure a database or database management software from illegitimate use and malicious threats and attacks. In this paper, we create 6 types of method for more secure ways to store and retrieve database information that is both convenient and efficient. Confidentiality, integrity, and availability, also known as the CIA triad, is a model designed to guide policies for information security within the database. There are many cryptography techniques available among them, ECC is one of the most powerful techniques. A user wants to the data stores or request, the user needs to authenticate. When a user who is authenticated, he will get key from a key generator and then he must be data encrypt or decrypt within the database. Every keys store in a key generator and retrieve from the key generator. We use 256 bits of AES encryption for rows level encryption, columns level encryption, and elements level encryption for the database. Next two method is encrypted AES 256 bits random key by using 521 bits of ECC encryption and signature for rows level encryption and column level encryption. Last method is most secure method in this paper, which method is element level encryption with AES and ECC encryption for confidentiality and ECC signature use for every element within the database for integrity. As well as encrypting data at rest, it's also important to ensure confidential data are encrypted in motion over our network to protect against database signature security. The advantages of elements level are difficult for attack because the attacker gets a key that is lose only one element. The disadvantages need to thousands or millions of keys to manage.
We developed a virtualization-based infringement incident response tool for cyber security training system using Cloud. This tool was developed by applying the concept of attack and defense which is the basic of military war game modeling and simulation. The main purpose of this software is to cultivate cyber security experts capable of coping with various situations to minimize the damage in the shortest time when an infringement incident occurred. This tool acquired the invaluable certificate from Korean government agency. This tool shall provide CBT type remote education such as scenario based infringement incident response training, hacking defense practice, and vulnerability measure practice. The tool works in Linux, Window operating system environments, and uses Korean e-government framework and secure coding to construct a situation similar to the actual information system. In the near future, Internet and devices connected to the Internet will be greatly enlarged, and cyber security threats will be diverse and widespread. It is expected that various kinds of hacking will be attempted in an advanced types using artificial intelligence technology. Therefore, we are working on applying the artificial intelligence technology to the current infringement incident response tool to cope with these evolving threats.
We consider the possibility of detecting malicious behaviors of the advanced persistent threat (APT) at endpoints during incident response or forensics investigations. Specifically, we study the case where third-party sensors are not available; our observables are obtained solely from inherent digital artifacts of Windows operating systems. What is of particular interest is an artifact called the Application Compatibility Cache (Shimcache). As it is not apparent from the Shimcache when a file has been executed, we propose an algorithm of estimating the time of file execution up to an interval. We also show guarantees of the proposed algorithm's performance and various possible extensions that can improve the estimation. Finally, combining this approach with methods of machine learning, as well as information from other digital artifacts, we design a prototype system called XTEC and demonstrate that it can help hunt for the APT in a real-world case study.
Most Web sites rely on resources hosted by third parties such as CDNs. Third parties may be compromised or coerced into misbehaving, e.g. delivering a malicious script or stylesheet. Unexpected changes to resources hosted by third parties can be detected with the Subresource Integrity (SRI) mechanism. The focus of SRI is on scripts and stylesheets. Web fonts cannot be secured with that mechanism under all circumstances. The first contribution of this paper is to evaluates the potential for attacks using malicious fonts. With an instrumented browser we find that (1) more than 95% of the top 50,000 Web sites of the Tranco top list rely on resources hosted by third parties and that (2) only a small fraction employs SRI. Moreover, we find that more than 60% of the sites in our sample use fonts hosted by third parties, most of which are being served by Google. The second contribution of the paper is a proof of concept of a malicious font as well as a tool for automatically generating such a font, which targets security-conscious users who are used to verifying cryptographic fingerprints. Software vendors publish such fingerprints along with their software packages to allow users to verify their integrity. Due to incomplete SRI support for Web fonts, a third party could force a browser to load our malicious font. The font targets a particular cryptographic fingerprint and renders it as a desired different fingerprint. This allows attackers to fool users into believing that they download a genuine software package although they are actually downloading a maliciously modified version. Finally, we propose countermeasures that could be deployed to protect the integrity of Web fonts.
Internet of Things (IoT) is a key emerging technology which aims to connect objects over the internet. Software Defined Networking (SDN) is another new intelligent technology within networking domain which increases the network performance and provides better security, reliability, and privacy using dynamic software programs. In this paper, we have proposed a distributed secure Black SDN-IoT architecture with NFV implementation for smart cities. We have incorporated Black SDN that is highly secured SDN which gives better result in network performances, security, and privacy and secures both metadata and payload within each layer. This architecture also tried to introduce an approach which is more effective for building a cluster by means of Black SDN. Black SDN-loT with NFV concept brings benefits to the related fields in terms of energy savings and load balancing. Moreover, Multiple distributed controller have proposed to improve availability, integrity, privacy, confidentiality and etc. In the proposed architecture, the Black network provides higher security of each network layer comparative to the conventional network. Finally, this paper has discussed the architectural design of distributed secure Black SDN-IoT with NFV for smart cities and research challenges.
Network Function Virtualization (NFV) is a recent concept where virtualization enables the shift from network functions (e.g., routers, switches, load-balancers, proxies) on specialized hardware appliances to software images running on all-purpose, high-volume servers. The resource allocation problem in the NFV environment has received considerable attention in the past years. However, little attention was paid to the security aspects of the problem in spite of the increasing number of vulnerabilities faced by cloud-based applications. Securing the services is an urgent need to completely benefit from the advantages offered by NFV. In this paper, we show how a network service request, composed of a set of service function chains (SFC) should be modified and enriched to take into consideration the security requirements of the supported service. We examine the well-known security best practices and propose a two-step algorithm that extends the initial SFC requests to a more complex chaining model that includes the security requirements of the service.
The usage of small drones/UAVs has significantly increased recently. Consequently, there is a rising potential of small drones being misused for illegal activities such as terrorism, smuggling of drugs, etc. posing high-security risks. Hence, tracking and surveillance of drones are essential to prevent security breaches. The similarity in the appearance of small drone and birds in complex background makes it challenging to detect drones in surveillance videos. This paper addresses the challenge of detecting small drones in surveillance videos using popular and advanced deep learning-based object detection methods. Different CNN-based architectures such as ResNet-101 and Inception with Faster-RCNN, as well as Single Shot Detector (SSD) model was used for experiments. Due to sparse data available for experiments, pre-trained models were used while training the CNNs using transfer learning. Best results were obtained from experiments using Faster-RCNN with the base architecture of ResNet-101. Experimental analysis on different CNN architectures is presented in the paper, along with the visual analysis of the test dataset.
Phishing is typically deployed as an attack vector in the initial stages of a hacking endeavour. Due to it low-risk rightreward nature it has seen a widespread adoption, and detecting it has become a challenge in recent times. This paper proposes a novel means of detecting phishing websites using a Generative Adversarial Network. Taking into account the internal structure and external metadata of a website, the proposed approach uses a generator network which generates both legitimate as well as synthetic phishing features to train a discriminator network. The latter then determines if the features are either normal or phishing websites, before improving its detection accuracy based on the classification error. The proposed approach is evaluated using two different phishing datasets and is found to achieve a detection accuracy of up to 94%.
We consider transmissions of secure messages over a burst erasure wiretap channel under decoding delay constraint. For block codes we introduce and study delay optimal secure burst erasure correcting (DO-SBE) codes that provide perfect security and recover a burst of erasures of a limited length with minimum possible delay. Our explicit constructions of DO-SBE block codes achieve maximum secrecy rate. We also consider a model of a burst erasure wiretap channel for the streaming setup, where in any sliding window of a given size, in a stream of encoded source packets, the eavesdropper is able to observe packets in an interval of a given size. For that model we obtain an information theoretic upper bound on the secrecy rate for delay optimal streaming codes. We show that our block codes can be used for construction of delay optimal burst erasure correcting streaming codes which provide perfect security and meet the upper bound for a certain class of code parameters.
Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.
Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.
Software rejuvenation has been proposed as a strategy to protect cyber-physical systems (CSPs) against unanticipated and undetectable cyber attacks. The basic idea is to refresh the system periodically with a secure and trusted copy of the online software so as to eliminate all effects of malicious modifications to the run-time code and data. This paper considers software rejuvenation design from a control-theoretic perspective. Invariant sets for the Lyapunov function for the safety controller are used to derive bounds on the time that the CPS can operate in mission control mode before the software must be refreshed. With these results it can be guaranteed that the CPS will remain safe under cyber attacks against the run-time system. The approach is illustrated using simulation of the nonlinear dynamics of a quadrotor system. The concluding section discusses directions for further research.