Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2019-01-16
Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J..  2018.  Defense Against Adversarial Attacks Using High-Level Representation Guided Denoiser. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. :1778–1787.
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffers from the error amplification effect, in which small residual adversarial noise is progressively amplified and leads to wrong classifications. HGD overcomes this problem by using a loss function defined as the difference between the target model's outputs activated by the clean image and denoised image. Compared with ensemble adversarial training which is the state-of-the-art defending method on large images, HGD has three advantages. First, with HGD as a defense, the target model is more robust to either white-box or black-box adversarial attacks. Second, HGD can be trained on a small subset of the images and generalizes well to other images and unseen classes. Third, HGD can be transferred to defend models other than the one guiding it. In NIPS competition on defense against adversarial attacks, our HGD solution won the first place and outperformed other models by a large margin.1
Qi, Bolun, Fan, Chuchu, Jiang, Minghao, Mitra, Sayan.  2018.  DryVR 2.0: A Tool for Verification and Controller Synthesis of Black-box Cyber-physical Systems. Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (Part of CPS Week). :269–270.
We present a demo of DryVR 2.0, a framework for verification and controller synthesis of cyber-physical systems composed of black-box simulators and white-box automata. For verification, DryVR 2.0 takes as input a black-box simulator, a white-box transition graph, a time bound and a safety specification. As output it generates over-approximations of the reachable states and returns "Safe" if the system meets the given bounded safety specification, or it returns "Unsafe" with a counter-example. For controller synthesis, DryVR 2.0 takes as input black-box simulator(s) and a reach-avoid specification, and uses RRTs to find a transition graph such that the combined system satisfies the given specification.
Horton, M., Samanta, B., Reid, C., Chen, L., Kadlec, C..  2018.  Development of a Secure, Heterogeneous Cloud Robotics Infrastructure: Implementing a Mesh VPN and Robotic File System Security Practices. SoutheastCon 2018. :1–8.

Robotics and the Internet of Things (IoT) are enveloping our society at an exponential rate due to lessening costs and better availability of hardware and software. Additionally, Cloud Robotics and Robot Operating System (ROS) can offset onboard processing power. However, strong and fundamental security practices have not been applied to fully protect these systems., partially negating the benefits of IoT. Researchers are therefore tasked with finding ways of securing communications and systems. Since security and convenience are oftentimes at odds, securing many heterogeneous components without compromising performance can be daunting. Protecting systems from attacks and ensuring that connections and instructions are from approved devices, all while maintaining the performance is imperative. This paper focuses on the development of security best practices and a mesh framework with an open-source, multipoint-to-multipoint virtual private network (VPN) that can tie Linux, Windows, IOS., and Android devices into one secure fabric, with heterogeneous mobile robotic platforms running ROSPY in a secure cloud robotics infrastructure.

Hendler, Danny, Kels, Shay, Rubin, Amir.  2018.  Detecting Malicious PowerShell Commands Using Deep Neural Networks. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :187–197.

Microsoft's PowerShell is a command-line shell and scripting language that is installed by default on Windows machines. Based on Microsoft's .NET framework, it includes an interface that allows programmers to access operating system services. While PowerShell can be configured by administrators for restricting access and reducing vulnerabilities, these restrictions can be bypassed. Moreover, PowerShell commands can be easily generated dynamically, executed from memory, encoded and obfuscated, thus making the logging and forensic analysis of code executed by PowerShell challenging. For all these reasons, PowerShell is increasingly used by cybercriminals as part of their attacks' tool chain, mainly for downloading malicious contents and for lateral movement. Indeed, a recent comprehensive technical report by Symantec dedicated to PowerShell's abuse by cybercrimials [52] reported on a sharp increase in the number of malicious PowerShell samples they received and in the number of penetration tools and frameworks that use PowerShell. This highlights the urgent need of developing effective methods for detecting malicious PowerShell commands. In this work, we address this challenge by implementing several novel detectors of malicious PowerShell commands and evaluating their performance. We implemented both "traditional" natural language processing (NLP) based detectors and detectors based on character-level convolutional neural networks (CNNs). Detectors' performance was evaluated using a large real-world dataset. Our evaluation results show that, although our detectors (and especially the traditional NLP-based ones) individually yield high performance, an ensemble detector that combines an NLP-based classifier with a CNN-based classifier provides the best performance, since the latter classifier is able to detect malicious commands that succeed in evading the former. Our analysis of these evasive commands reveals that some obfuscation patterns automatically detected by the CNN classifier are intrinsically difficult to detect using the NLP techniques we applied. Our detectors provide high recall values while maintaining a very low false positive rate, making us cautiously optimistic that they can be of practical value.

2018-12-10
Oyekanlu, E..  2018.  Distributed Osmotic Computing Approach to Implementation of Explainable Predictive Deep Learning at Industrial IoT Network Edges with Real-Time Adaptive Wavelet Graphs. 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). :179–188.
Challenges associated with developing analytics solutions at the edge of large scale Industrial Internet of Things (IIoT) networks close to where data is being generated in most cases involves developing analytics solutions from ground up. However, this approach increases IoT development costs and system complexities, delay time to market, and ultimately lowers competitive advantages associated with delivering next-generation IoT designs. To overcome these challenges, existing, widely available, hardware can be utilized to successfully participate in distributed edge computing for IIoT systems. In this paper, an osmotic computing approach is used to illustrate how distributed osmotic computing and existing low-cost hardware may be utilized to solve complex, compute-intensive Explainable Artificial Intelligence (XAI) deep learning problem from the edge, through the fog, to the network cloud layer of IIoT systems. At the edge layer, the C28x digital signal processor (DSP), an existing low-cost, embedded, real-time DSP that has very wide deployment and integration in several IoT industries is used as a case study for constructing real-time graph-based Coiflet wavelets that could be used for several analytic applications including deep learning pre-processing applications at the edge and fog layers of IIoT networks. Our implementation is the first known application of the fixed-point C28x DSP to construct Coiflet wavelets. Coiflet Wavelets are constructed in the form of an osmotic microservice, using embedded low-level machine language to program the C28x at the network edge. With the graph-based approach, it is shown that an entire Coiflet wavelet distribution could be generated from only one wavelet stored in the C28x based edge device, and this could lead to significant savings in memory at the edge of IoT networks. Pearson correlation coefficient is used to select an edge generated Coiflet wavelet and the selected wavelet is used at the fog layer for pre-processing and denoising IIoT data to improve data quality for fog layer based deep learning application. Parameters for implementing deep learning at the fog layer using LSTM networks have been determined in the cloud. For XAI, communication network noise is shown to have significant impact on results of predictive deep learning at IIoT network fog layer.
Ha, Taehyun, Lee, Sangwon, Kim, Sangyeon.  2018.  Designing Explainability of an Artificial Intelligence System. Proceedings of the Technology, Mind, and Society. :14:1–14:1.

Explainability and accuracy of the machine learning algorithms usually laid on a trade-off relationship. Several algorithms such as deep-learning artificial neural networks have high accuracy but low explainability. Since there were only limited ways to access the learning and prediction processes in algorithms, researchers and users were not able to understand how the results were given to them. However, a recent project, explainable artificial intelligence (XAI) by DARPA, showed that AI systems can be highly explainable but also accurate. Several technical reports of XAI suggested ways of extracting explainable features and their positive effects on users; the results showed that explainability of AI was helpful to make users understand and trust the system. However, only a few studies have addressed why the explainability can bring positive effects to users. We suggest theoretical reasons from the attribution theory and anthropomorphism studies. Trough a review, we develop three hypotheses: (1) causal attribution is a human nature and thus a system which provides casual explanation on their process will affect users to attribute the result of system; (2) Based on the attribution results, users will perceive the system as human-like and which will be a motivation of anthropomorphism; (3) The system will be perceived by the users through the anthropomorphism. We provide a research framework for designing causal explainability of an AI system and discuss the expected results of the research.

Hu, Y., Abuzainab, N., Saad, W..  2018.  Dynamic Psychological Game for Adversarial Internet of Battlefield Things Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.

In this paper, a novel game-theoretic framework is introduced to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, a dynamic, psychological network interdiction game is formulated between a soldier and an attacker. In this game, the soldier seeks to find the optimal path to minimize the time needed to reach a destination, while maintaining a desired bit error rate (BER) performance by selectively communicating with certain IoBT devices. The attacker, on the other hand, seeks to find the optimal IoBT devices to attack, so as to maximize the BER of the soldier and hinder the soldier's progress. In this game, the soldier and attacker's first- order and second-order beliefs on each others' behavior are formulated to capture their psychological behavior. Using tools from psychological game theory, the soldier and attacker's intention to harm one another is captured in their utilities, based on their beliefs. A psychological forward induction-based solution is proposed to solve the dynamic game. This approach can find a psychological sequential equilibrium of the game, upon convergence. Simulation results show that, whenever the soldier explicitly intends to frustrate the attacker, the soldier's material payoff is increased by up to 15.6% compared to a traditional dynamic Bayesian game.

Abuzainab, N., Saad, W..  2018.  Dynamic Connectivity Game for Adversarial Internet of Battlefield Things Systems. IEEE Internet of Things Journal. 5:378–390.

In this paper, the problem of network connectivity is studied for an adversarial Internet of Battlefield Things (IoBT) system in which an attacker aims at disrupting the connectivity of the network by choosing to compromise one of the IoBT nodes at each time epoch. To counter such attacks, an IoBT defender attempts to reestablish the IoBT connectivity by either deploying new IoBT nodes or by changing the roles of existing nodes. This problem is formulated as a dynamic multistage Stackelberg connectivity game that extends classical connectivity games and that explicitly takes into account the characteristics and requirements of the IoBT network. In particular, the defender's payoff captures the IoBT latency as well as the sum of weights of disconnected nodes at each stage of the game. Due to the dependence of the attacker's and defender's actions at each stage of the game on the network state, the feedback Stackelberg solution [feedback Stackelberg equilibrium (FSE)] is used to solve the IoBT connectivity game. Then, sufficient conditions under which the IoBT system will remain connected, when the FSE solution is used, are determined analytically. Numerical results show that the expected number of disconnected sensors, when the FSE solution is used, decreases up to 46% compared to a baseline scenario in which a Stackelberg game with no feedback is used, and up to 43% compared to a baseline equal probability policy.

Mirzamohammadi, Saeed, Chen, Justin A., Sani, Ardalan Amiri, Mehrotra, Sharad, Tsudik, Gene.  2017.  Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices. Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. :28:1–28:14.
Mobile and Internet-of-Things (IoT) devices, such as smartphones, tablets, wearables, smart home assistants (e.g., Google Home and Amazon Echo), and wall-mounted cameras, come equipped with various sensors, notably camera and microphone. These sensors can capture extremely sensitive and private information. There are several important scenarios where, for privacy reasons, a user might require assurance about the use (or non-use) of these sensors. For example, the owner of a home assistant might require assurance that the microphone on the device is not used during a given time of the day. Similarly, during a confidential meeting, the host needs assurance that attendees do not record any audio or video. Currently, there are no means to attain such assurance in modern mobile and IoT devices. To this end, this paper presents Ditio, a system approach for auditing sensor activities. Ditio records sensor activity logs that can be later inspected by an auditor and checked for compliance with a given policy. It is based on a hybrid security monitor architecture that leverages both ARM's virtualization hardware and TrustZone. Ditio includes an authentication protocol for establishing a logging session with a trusted server and a formally verified companion tool for log analysis. Ditio prototypes on ARM Juno development board and Nexus 5 smartphone show that it introduces negligible performance overhead for both the camera and microphone. However, it incurs up to 17% additional power consumption under heavy use for the Nexus 5 camera.
2018-11-28
Elsabagh, Mohamed, Barbara, Daniel, Fleck, Dan, Stavrou, Angelos.  2017.  Detecting ROP with Statistical Learning of Program Characteristics. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :219–226.

Return-Oriented Programming (ROP) has emerged as one of the most widely used techniques to exploit software vulnerabilities. Unfortunately, existing ROP protections suffer from a number of shortcomings: they require access to source code and compiler support, focus on specific types of gadgets, depend on accurate disassembly and construction of Control Flow Graphs, or use hardware-dependent (microarchitectural) characteristics. In this paper, we propose EigenROP, a novel system to detect ROP payloads based on unsupervised statistical learning of program characteristics. We study, for the first time, the feasibility and effectiveness of using microarchitecture-independent program characteristics – namely, memory locality, register traffic, and memory reuse distance – for detecting ROP. We propose a novel directional statistics based algorithm to identify deviations from the expected program characteristics during execution. EigenROP works transparently to the protected program, without requiring debug information, source code or disassembly. We implemented a dynamic instrumentation prototype of EigenROP using Intel Pin and measured it against in-the-wild ROP exploits and on payloads generated by the ROP compiler ROPC. Overall, EigenROP achieved significantly higher accuracy than prior anomaly-based solutions. It detected the execution of the ROP gadget chains with 81% accuracy, 80% true positive rate, only 0.8% false positive rate, and incurred comparable overhead to similar Pin-based solutions. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer

Siadati, Hossein, Memon, Nasir.  2017.  Detecting Structurally Anomalous Logins Within Enterprise Networks. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1273–1284.

Many network intrusion detection systems use byte sequences to detect lateral movements that exploit remote vulnerabilities. Attackers bypass such detection by stealing valid credentials and using them to transmit from one computer to another without creating abnormal network traffic. We call this method Credential-based Lateral Movement. To detect this type of lateral movement, we develop the concept of a Network Login Structure that specifies normal logins within a given network. Our method models a network login structure by automatically extracting a collection of login patterns by using a variation of the market-basket algorithm. We then employ an anomaly detection approach to detect malicious logins that are inconsistent with the enterprise network's login structure. Evaluations show that the proposed method is able to detect malicious logins in a real setting. In a simulated attack, our system was able to detect 82% of malicious logins, with a 0.3% false positive rate. We used a real dataset of millions of logins over the course of five months within a global financial company for evaluation of this work.

Bortolameotti, Riccardo, van Ede, Thijs, Caselli, Marco, Everts, Maarten H., Hartel, Pieter, Hofstede, Rick, Jonker, Willem, Peter, Andreas.  2017.  DECANTeR: DEteCtion of Anomalous outbouNd HTTP TRaffic by Passive Application Fingerprinting. Proceedings of the 33rd Annual Computer Security Applications Conference. :373–386.

We present DECANTeR, a system to detect anomalous outbound HTTP communication, which passively extracts fingerprints for each application running on a monitored host. The goal of our system is to detect unknown malware and backdoor communication indicated by unknown fingerprints extracted from a host's network traffic. We evaluate a prototype with realistic data from an international organization and datasets composed of malicious traffic. We show that our system achieves a false positive rate of 0.9% for 441 monitored host machines, an average detection rate of 97.7%, and that it cannot be evaded by malware using simple evasion techniques such as using known browser user agent values. We compare our solution with DUMONT [24], the current state-of-the-art IDS which detects HTTP covert communication channels by focusing on benign HTTP traffic. The results show that DECANTeR outperforms DUMONT in terms of detection rate, false positive rate, and even evasion-resistance. Finally, DECANTeR detects 96.8% of information stealers in our dataset, which shows its potential to detect data exfiltration.

Kuk, Seungho, Kim, Hyogon, Park, Yongtae.  2017.  Detecting False Position Attack in Vehicular Communications Using Angular Check. Proceedings of the 2Nd ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services. :25–29.

With Wireless Access in Vehicular Environment (WAVE) finalized for legal enforcement from 2020 after the recent move by the U.S. Government, data plausibility is still an unresolved security issue. In particular, an attacker may forge false position values in safety beacons in order to cause unsafe response from startled receiving vehicles. The data plausibility is a longstanding issue for which various approaches based on sensor fusion, behavior analysis and communication constraints have been proposed, but none of these completely solve the problem. This paper proposes an angle of arrival (AoA) based method to invalidate position forging adversaries such as roadside attackers. Built entirely on the WAVE framework, it can be used even when the traditional sensor fusion-based or behavior-based check is inapplicable. The proposed approach is a completely passive scheme that does not require more than an additional antenna that is strongly recommended for performance anyway.

Jhumka, Arshad, Bradbury, Matthew.  2017.  Deconstructing Source Location Privacy-Aware Routing Protocols. Proceedings of the Symposium on Applied Computing. :431–436.

Source location privacy (SLP) is becoming an important property for a large class of security-critical wireless sensor network applications such as monitoring and tracking. Much of the previous work on SLP have focused on the development of various protocols to enhance the level of SLP imparted to the network, under various attacker models and other conditions. Others works have focused on analysing the level of SLP being imparted by a specific protocol. In this paper, we focus on deconstructing routing-based SLP protocols to enable a better understanding of their structure. We argue that the SLP-aware routing protocols can be classified into two main categories, namely (i) spatial and (ii) temporal. Based on this, we show that there are three important components, namely (i) decoy selection, (ii) use and routing of control messages and (iii) use and routing of decoy messages. The decoy selection technique imparts the spatial or temporal property of SLP-aware routing. We show the viability of the framework through the construction of well-known SLP-aware routing protocols using the identified components.

2018-11-19
Ali, S., Khan, M. A., Ahmad, J., Malik, A. W., ur Rehman, A..  2018.  Detection and Prevention of Black Hole Attacks in IOT Amp;Amp; WSN. 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). :217–226.

Wireless Sensor Network is the combination of small devices called sensor nodes, gateways and software. These nodes use wireless medium for transmission and are capable to sense and transmit the data to other nodes. Generally, WSN composed of two types of nodes i.e. generic nodes and gateway nodes. Generic nodes having the ability to sense while gateway nodes are used to route that information. IoT now extended to IoET (internet of Everything) to cover all electronics exist around, like a body sensor networks, VANET's, smart grid stations, smartphone, PDA's, autonomous cars, refrigerators and smart toasters that can communicate and share information using existing network technologies. The sensor nodes in WSN have very limited transmission range as well as limited processing speed, storage capacities and low battery power. Despite a wide range of applications using WSN, its resource constrained nature given birth to a number severe security attacks e.g. Selective Forwarding attack, Jamming-attack, Sinkhole attack, Wormhole attack, Sybil attack, hello Flood attacks, Grey Hole, and the most dangerous BlackHole Attacks. Attackers can easily exploit these vulnerabilities to compromise the WSN network.

Lugo, Anthony Erb, Garcia, Dennis, Hemberg, Erik, O'Reilly, Una-May.  2017.  Developing Proactive Defenses for Computer Networks with Coevolutionary Genetic Algorithms. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :273–274.
Our cybersecurity tool, RIVALS, develops adaptive network defense strategies by modeling adversarial network attack and defense behavior in peer-to-peer networks via coevolutionary algorithms. Currently RIVALS DOS attacks are modestly modeled by the selection of a node that is completely disabled for a resource-limited duration. Defenders have three different network routing protocols. Attack or mission completion and resource cost metrics serve as attacker and defender objectives. This work also includes a description of RIVALS' suite of coevolutionary algorithms that explore archiving as a means of maintaining progressive exploration and support the evaluation of different solution concepts. To compare and contrast the effectiveness of each algorithm, we execute simulations on 3 different network topologies. Our experiments show that it is possible to forgo the assurance of monotonically increasing results and still retain high quality results.
Venkatesan, Sridhar, Albanese, Massimiliano, Shah, Ankit, Ganesan, Rajesh, Jajodia, Sushil.  2017.  Detecting Stealthy Botnets in a Resource-Constrained Environment Using Reinforcement Learning. Proceedings of the 2017 Workshop on Moving Target Defense. :75–85.

Modern botnets can persist in networked systems for extended periods of time by operating in a stealthy manner. Despite the progress made in the area of botnet prevention, detection, and mitigation, stealthy botnets continue to pose a significant risk to enterprises. Furthermore, existing enterprise-scale solutions require significant resources to operate effectively, thus they are not practical. In order to address this important problem in a resource-constrained environment, we propose a reinforcement learning based approach to optimally and dynamically deploy a limited number of defensive mechanisms, namely honeypots and network-based detectors, within the target network. The ultimate goal of the proposed approach is to reduce the lifetime of stealthy botnets by maximizing the number of bots identified and taken down through a sequential decision-making process. We provide a proof-of-concept of the proposed approach, and study its performance in a simulated environment. The results show that the proposed approach is promising in protecting against stealthy botnets.

Vu, Ly, Bui, Cong Thanh, Nguyen, Quang Uy.  2017.  A Deep Learning Based Method for Handling Imbalanced Problem in Network Traffic Classification. Proceedings of the Eighth International Symposium on Information and Communication Technology. :333–339.

Network traffic classification is an important problem in network traffic analysis. It plays a vital role in many network tasks including quality of service, firewall enforcement and security. One of the challenging problems of classifying network traffic is the imbalanced property of network data. Usually, the amount of traffic in some classes is much higher than the amount of traffic in other classes. In this paper, we proposed an application of a deep learning approach to address imbalanced data problem in network traffic classification. We used a recent proposed deep network for unsupervised learning called Auxiliary Classifier Generative Adversarial Network to generate synthesized data samples for balancing between the minor and the major classes. We tested our method on a well-known network traffic dataset and the results showed that our proposed method achieved better performance compared to a recent proposed method for handling imbalanced problem in network traffic classification.

Qiu, Zhaofan, Pan, Yingwei, Yao, Ting, Mei, Tao.  2017.  Deep Semantic Hashing with Generative Adversarial Networks. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. :225–234.

Hashing has been a widely-adopted technique for nearest neighbor search in large-scale image retrieval tasks. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, the cost of annotating data is often an obstacle when applying supervised hashing to a new domain. Moreover, the results can suffer from the robustness problem as the data at training and test stage may come from different distributions. This paper studies the exploration of generating synthetic data through semi-supervised generative adversarial networks (GANs), which leverages largely unlabeled and limited labeled training data to produce highly compelling data with intrinsic invariance and global coherence, for better understanding statistical structures of natural data. We demonstrate that the above two limitations can be well mitigated by applying the synthetic data for hashing. Specifically, a novel deep semantic hashing with GANs (DSH-GANs) is presented, which mainly consists of four components: a deep convolution neural networks (CNN) for learning image representations, an adversary stream to distinguish synthetic images from real ones, a hash stream for encoding image representations to hash codes and a classification stream. The whole architecture is trained end-to-end by jointly optimizing three losses, i.e., adversarial loss to correct label of synthetic or real for each sample, triplet ranking loss to preserve the relative similarity ordering in the input real-synthetic triplets and classification loss to classify each sample accurately. Extensive experiments conducted on both CIFAR-10 and NUS-WIDE image benchmarks validate the capability of exploiting synthetic images for hashing. Our framework also achieves superior results when compared to state-of-the-art deep hash models.

Chen, Lele, Srivastava, Sudhanshu, Duan, Zhiyao, Xu, Chenliang.  2017.  Deep Cross-Modal Audio-Visual Generation. Proceedings of the on Thematic Workshops of ACM Multimedia 2017. :349–357.

Cross-modal audio-visual perception has been a long-lasting topic in psychology and neurology, and various studies have discovered strong correlations in human perception of auditory and visual stimuli. Despite work on computational multimodal modeling, the problem of cross-modal audio-visual generation has not been systematically studied in the literature. In this paper, we make the first attempt to solve this cross-modal generation problem leveraging the power of deep generative adversarial training. Specifically, we use conditional generative adversarial networks to achieve cross-modal audio-visual generation of musical performances. We explore different encoding methods for audio and visual signals, and work on two scenarios: instrument-oriented generation and pose-oriented generation. Being the first to explore this new problem, we compose two new datasets with pairs of images and sounds of musical performances of different instruments. Our experiments using both classification and human evaluation demonstrate that our model has the ability to generate one modality, i.e., audio/visual, from the other modality, i.e., visual/audio, to a good extent. Our experiments on various design choices along with the datasets will facilitate future research in this new problem space.

Liang, Chen, Yang, Xiao, Wham, Drew, Pursel, Bart, Passonneaur, Rebecca, Giles, C. Lee.  2017.  Distractor Generation with Generative Adversarial Nets for Automatically Creating Fill-in-the-Blank Questions. Proceedings of the Knowledge Capture Conference. :33:1–33:4.

Distractor generation is a crucial step for fill-in-the-blank question generation. We propose a generative model learned from training generative adversarial nets (GANs) to create useful distractors. Our method utilizes only context information and does not use the correct answer, which is completely different from previous Ontology-based or similarity-based approaches. Trained on the Wikipedia corpus, the proposed model is able to predict Wiki entities as distractors. Our method is evaluated on two biology question datasets collected from Wikipedia and actual college-level exams. Experimental results show that our context-based method achieves comparable performance to a frequently used word2vec-based method for the Wiki dataset. In addition, we propose a second-stage learner to combine the strengths of the two methods, which further improves the performance on both datasets, with 51.7% and 48.4% of generated distractors being acceptable.

Yang, Lingxiao, Liu, Risheng, Zhang, David, Zhang, Lei.  2017.  Deep Location-Specific Tracking. Proceedings of the 25th ACM International Conference on Multimedia. :1309–1317.

Convolutional Neural Network (CNN) based methods have shown significant performance gains in the problem of visual tracking in recent years. Due to many uncertain changes of objects online, such as abrupt motion, background clutter and large deformation, the visual tracking is still a challenging task. We propose a novel algorithm, namely Deep Location-Specific Tracking, which decomposes the tracking problem into a localization task and a classification task, and trains an individual network for each task. The localization network exploits the information in the current frame and provides a specific location to improve the probability of successful tracking, while the classification network finds the target among many examples generated around the target location in the previous frame, as well as the one estimated from the localization network in the current frame. CNN based trackers often have massive number of trainable parameters, and are prone to over-fitting to some particular object states, leading to less precision or tracking drift. We address this problem by learning a classification network based on 1 × 1 convolution and global average pooling. Extensive experimental results on popular benchmark datasets show that the proposed tracker achieves competitive results without using additional tracking videos for fine-tuning. The code is available at https://github.com/ZjjConan/DLST

Rüth, Jan, Zimmermann, Torsten, Wolsing, Konrad, Hohlfeld, Oliver.  2018.  Digging into Browser-Based Crypto Mining. Proceedings of the Internet Measurement Conference 2018. :70–76.

Mining is the foundation of blockchain-based cryptocurrencies such as Bitcoin rewarding the miner for finding blocks for new transactions. The Monero currency enables mining with standard hardware in contrast to special hardware (ASICs) as often used in Bitcoin, paving the way for in-browser mining as a new revenue model for website operators. In this work, we study the prevalence of this new phenomenon. We identify and classify mining websites in 138M domains and present a new fingerprinting method which finds up to a factor of 5.7 more miners than publicly available block lists. Our work identifies and dissects Coinhive as the major browser-mining stakeholder. Further, we present a new method to associate mined blocks in the Monero blockchain to mining pools and uncover that Coinhive currently contributes 1.18% of mined blocks having turned over 1293 Moneros in June 2018.

Carlin, D., O'Kane, P., Sezer, S., Burgess, J..  2018.  Detecting Cryptomining Using Dynamic Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–6.

With the rise in worth and popularity of cryptocurrencies, a new opportunity for criminal gain is being exploited and with little currently offered in the way of defence. The cost of mining (i.e., earning cryptocurrency through CPU-intensive calculations that underpin the blockchain technology) can be prohibitively expensive, with hardware costs and electrical overheads previously offering a loss compared to the cryptocurrency gained. Off-loading these costs along a distributed network of machines via malware offers an instantly profitable scenario, though standard Anti-virus (AV) products offer some defences against file-based threats. However, newer fileless malicious attacks, occurring through the browser on seemingly legitimate websites, can easily evade detection and surreptitiously engage the victim machine in computationally-expensive cryptomining (cryptojacking). With no current academic literature on the dynamic opcode analysis of cryptomining, to the best of our knowledge, we present the first such experimental study. Indeed, this is the first such work presenting opcode analysis on non-executable files. Our results show that browser-based cryptomining within our dataset can be detected by dynamic opcode analysis, with accuracies of up to 100%. Further to this, our model can distinguish between cryptomining sites, weaponized benign sites, de-weaponized cryptomining sites and real world benign sites. As it is process-based, our technique offers an opportunity to rapidly detect, prevent and mitigate such attacks, a novel contribution which should encourage further future work.

2018-11-14
Repp, P..  2017.  Diagnostics and Assessment of the Industrial Network Security Expert System. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.
The paper dwells on the design of a diagnostic system and expert assessment of the significance of threats to the security of industrial networks. The proposed system is based on a new cyber-attacks classification and presupposes the existence of two structural blocks: the industrial network virtual model based on the scan selected nodal points and the generator of cyber-attacks sets. The diagnostic and expert assessment quality is improved by the use of the Markov chains or the Monte Carlo numerical method. The numerical algorithm of generating cyber-attacks sets is based on the LP$\tau$-sequence.