Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2019-02-08
Fang, Yong, Li, Yang, Liu, Liang, Huang, Cheng.  2018.  DeepXSS: Cross Site Scripting Detection Based on Deep Learning. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. :47-51.

Nowadays, Cross Site Scripting (XSS) is one of the major threats to Web applications. Since it's known to the public, XSS vulnerability has been in the TOP 10 Web application vulnerabilities based on surveys published by the Open Web Applications Security Project (OWASP). How to effectively detect and defend XSS attacks are still one of the most important security issues. In this paper, we present a novel approach to detect XSS attacks based on deep learning (called DeepXSS). First of all, we used word2vec to extract the feature of XSS payloads which captures word order information and map each payload to a feature vector. And then, we trained and tested the detection model using Long Short Term Memory (LSTM) recurrent neural networks. Experimental results show that the proposed XSS detection model based on deep learning achieves a precision rate of 99.5% and a recall rate of 97.9% in real dataset, which means that the novel approach can effectively identify XSS attacks.

Mavroeidis, Vasileios, Jøsang, Audun.  2018.  Data-Driven Threat Hunting Using Sysmon. Proceedings of the 2Nd International Conference on Cryptography, Security and Privacy. :82-88.
Threat actors can be persistent, motivated and agile, and they leverage a diversified and extensive set of tactics, techniques, and procedures to attain their goals. In response to that, organizations establish threat intelligence programs to improve their defense capabilities and mitigate risk. Actionable threat intelligence is integrated into security information and event management systems (SIEM) forming a threat intelligence platform. A threat intelligence platform aggregates log data from multiple disparate sources by deploying numerous collection agents and provides centralized analysis and reporting of an organization's security events for identifying malicious activity. Sysmon logs is a data source that has received considerable attention for endpoint visibility. Approaches for threat detection using Sysmon have been proposed mainly focusing on search engines (NoSQL database systems). This paper presents a new automated threat assessment system that relies on the analysis of continuous incoming feeds of Sysmon logs. The system is based on a cyber threat intelligence ontology and analyses Sysmon logs to classify software in different threat levels and augment cyber defensive capabilities through situational awareness, prediction, and automated courses of action.
2019-01-31
Buhren, Robert, Hetzelt, Felicitas, Pirnay, Niklas.  2018.  On the Detectability of Control Flow Using Memory Access Patterns. Proceedings of the 3rd Workshop on System Software for Trusted Execution. :48–53.

Shielding systems such as AMD's Secure Encrypted Virtualization aim to protect a virtual machine from a higher privileged entity such as the hypervisor. A cornerstone of these systems is the ability to protect the memory from unauthorized accesses. Despite this protection mechanism, previous attacks leveraged the control over memory resources to infer control flow of applications running in a shielded system. While previous works focused on a specific target application, there has been no general analysis on how the control flow of a protected application can be inferred. This paper tries to overcome this gap by providing a detailed analysis on the detectability of control flow using memory access patterns. To that end, we do not focus on a specific shielding system or a specific target application, but present a framework which can be applied to different types of shielding systems as well as to different types of attackers. By training a random forest classifier on the memory accesses emitted by syscalls of a shielded entity, we show that it is possible to infer the control flow of shielded entities with a high degree of accuracy.

Wang, Siqi, Zeng, Yijie, Liu, Qiang, Zhu, Chengzhang, Zhu, En, Yin, Jianping.  2018.  Detecting Abnormality Without Knowing Normality: A Two-Stage Approach for Unsupervised Video Abnormal Event Detection. Proceedings of the 26th ACM International Conference on Multimedia. :636–644.

Abnormal event detection in video surveillance is a valuable but challenging problem. Most methods adopt a supervised setting that requires collecting videos with only normal events for training. However, very few attempts are made under unsupervised setting that detects abnormality without priorly knowing normal events. Existing unsupervised methods detect drastic local changes as abnormality, which overlooks the global spatio-temporal context. This paper proposes a novel unsupervised approach, which not only avoids manually specifying normality for training as supervised methods do, but also takes the whole spatio-temporal context into consideration. Our approach consists of two stages: First, normality estimation stage trains an autoencoder and estimates the normal events globally from the entire unlabeled videos by a self-adaptive reconstruction loss thresholding scheme. Second, normality modeling stage feeds the estimated normal events from the previous stage into one-class support vector machine to build a refined normality model, which can further exclude abnormal events and enhance abnormality detection performance. Experiments on various benchmark datasets reveal that our method is not only able to outperform existing unsupervised methods by a large margin (up to 14.2% AUC gain), but also favorably yields comparable or even superior performance to state-of-the-art supervised methods.

Bisagno, Niccoló, Conci, Nicola, Rinner, Bernhard.  2018.  Dynamic Camera Network Reconfiguration for Crowd Surveillance. Proceedings of the 12th International Conference on Distributed Smart Cameras. :4:1–4:6.

Crowd surveillance will play a fundamental role in the coming generation of video surveillance systems, in particular for improving public safety and security. However, traditional camera networks are mostly not able to closely survey the entire monitoring area due to limitations in coverage, resolution and analytics performance. A smart camera network, on the other hand, offers the ability to reconfigure the sensing infrastructure by incorporating active devices such as pan-tilt-zoom (PTZ) cameras and UAV-based cameras, which enable the adaptation of coverage and target resolution over time. This paper proposes a novel decentralized approach for dynamic network reconfiguration, where cameras locally control their PTZ parameters and position, to optimally cover the entire scene. For crowded scenes, cameras must deal with a trade-off among global coverage and target resolution to effectively perform crowd analysis. We evaluate our approach in a simulated environment surveyed with fixed, PTZ, and UAV-based cameras.

Kim, Bo Youn, Choi, Seong Seok, Jang, Ju Wook.  2018.  Data Managing and Service Exchanging on IoT Service Platform Based on Blockchain with Smart Contract and Spatial Data Processing. Proceedings of the 2018 International Conference on Information Science and System. :59–63.

Expectation of cryptocurrencies has been increased rapidly and all of these cryptocurrencies are generated on blockchain platform. This means not only the paradigm is changing in the field of finance but also the blockchain platform is technically stable. Based on the stability of blockchain, many kind of crypto currencies or application platforms are being implemented or released and world famous banks are applying blockchain on their financial service[1]. Even law for exchanging cryptocurrencies is being discussed. Furthermore, blockchain platforms also run programmed source code which is called as smart contract on its distributed platform. Smart contract extends usage of blockchain platform. So in this paper, we propose an algorithm for recording and managing location data of IoT service provider and user based on blockchain with smart contract. Our proposal records data of participants in network by blockchain which ensures security and match with other optimized participant by spatial data processing.

Zhang, H., Chen, L., Liu, Q..  2018.  Digital Forensic Analysis of Instant Messaging Applications on Android Smartphones. 2018 International Conference on Computing, Networking and Communications (ICNC). :647–651.

In this paper, we discuss the digital forensic procedure and techniques for analyzing the local artifacts from four popular Instant Messaging applications in Android. As part of our findings, the user chat messages details and contacts were investigated for each application. By using two smartphones with different brands and the latest Android operating systems as experimental objects, we conducted digital investigations in a forensically sound manner. We summarize our findings regarding the different Instant Messaging chat modes and the corresponding encryption status of artifacts for each of the four applications. Our findings can be helpful to many mobile forensic investigations. Additionally, these findings may present values to Android system developers, Android mobile app developers, mobile security researchers as well as mobile users.

Cheng, Yushi, Ji, Xiaoyu, Lu, Tianyang, Xu, Wenyuan.  2018.  DeWiCam: Detecting Hidden Wireless Cameras via Smartphones. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :1–13.

Wireless cameras are widely deployed in surveillance systems for security guarding. However, the privacy concerns associated with unauthorized videotaping, are drawing an increasing attention recently. Existing detection methods for unauthorized wireless cameras are either limited by their detection accuracy or requiring dedicated devices. In this paper, we propose DeWiCam, a lightweight and effective detection mechanism using smartphones. The basic idea of DeWiCam is to utilize the intrinsic traffic patterns of flows from wireless cameras. Compared with traditional traffic pattern analysis, DeWiCam is more challenging because it cannot access the encrypted information in the data packets. Yet, DeWiCam overcomes the difficulty and can detect nearby wireless cameras reliably. To further identify whether a camera is in an interested room, we propose a human-assisted identification model. We implement DeWiCam on the Android platform and evaluate it with extensive experiments on 20 cameras. The evaluation results show that DeWiCam can detect cameras with an accuracy of 99% within 2.7 s.

Bahirat, Paritosh, He, Yangyang, Menon, Abhilash, Knijnenburg, Bart.  2018.  A Data-Driven Approach to Developing IoT Privacy-Setting Interfaces. 23rd International Conference on Intelligent User Interfaces. :165–176.

User testing is often used to inform the development of user interfaces (UIs). But what if an interface needs to be developed for a system that does not yet exist? In that case, existing datasets can provide valuable input for UI development. We apply a data-driven approach to the development of a privacy-setting interface for Internet-of-Things (IoT) devices. Applying machine learning techniques to an existing dataset of users' sharing preferences in IoT scenarios, we develop a set of "smart" default profiles. Our resulting interface asks users to choose among these profiles, which capture their preferences with an accuracy of 82%—a 14% improvement over a naive default setting and a 12% improvement over a single smart default setting for all users.

2019-01-21
Venkatesan, S., Sugrim, S., Izmailov, R., Chiang, C. J., Chadha, R., Doshi, B., Hoffman, B., Newcomb, E. Allison, Buchler, N..  2018.  On Detecting Manifestation of Adversary Characteristics. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :431–437.

Adversaries are conducting attack campaigns with increasing levels of sophistication. Additionally, with the prevalence of out-of-the-box toolkits that simplify attack operations during different stages of an attack campaign, multiple new adversaries and attack groups have appeared over the past decade. Characterizing the behavior and the modus operandi of different adversaries is critical in identifying the appropriate security maneuver to detect and mitigate the impact of an ongoing attack. To this end, in this paper, we study two characteristics of an adversary: Risk-averseness and Experience level. Risk-averse adversaries are more cautious during their campaign while fledgling adversaries do not wait to develop adequate expertise and knowledge before launching attack campaigns. One manifestation of these characteristics is through the adversary's choice and usage of attack tools. To detect these characteristics, we present multi-level machine learning (ML) models that use network data generated while under attack by different attack tools and usage patterns. In particular, for risk-averseness, we considered different configurations for scanning tools and trained the models in a testbed environment. The resulting model was used to predict the cautiousness of different red teams that participated in the Cyber Shield ‘16 exercise. The predictions matched the expected behavior of the red teams. For Experience level, we considered publicly-available remote access tools and usage patterns. We developed a Markov model to simulate usage patterns of attackers with different levels of expertise and through experiments on CyberVAN, we showed that the ML model has a high accuracy.

Ghafir, Ibrahim, Prenosil, Vaclav, Hammoudeh, Mohammad, Aparicio-Navarro, Francisco J., Rabie, Khaled, Jabban, Ahmad.  2018.  Disguised Executable Files in Spear-phishing Emails: Detecting the Point of Entry in Advanced Persistent Threat. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :44:1–44:5.

In recent years, cyber attacks have caused substantial financial losses and been able to stop fundamental public services. Among the serious attacks, Advanced Persistent Threat (APT) has emerged as a big challenge to the cyber security hitting selected companies and organisations. The main objectives of APT are data exfiltration and intelligence appropriation. As part of the APT life cycle, an attacker creates a Point of Entry (PoE) to the target network. This is usually achieved by installing malware on the targeted machine to leave a back-door open for future access. A common technique employed to breach into the network, which involves the use of social engineering, is the spear phishing email. These phishing emails may contain disguised executable files. This paper presents the disguised executable file detection (DeFD) module, which aims at detecting disguised exe files transferred over the network connections. The detection is based on a comparison between the MIME type of the transferred file and the file name extension. This module was experimentally evaluated and the results show a successful detection of disguised executable files.

Sangeetha, V., Kumar, S. S..  2018.  Detection of malicious node in mobile ad-hoc network. 2018 International Conference on Power, Signals, Control and Computation (EPSCICON). :1–3.

In recent years, the area of Mobile Ad-hoc Net-work(MANET) has received considerable attention among the research community owing to the advantages in its networking features as well as solving the unsolved issues in it. One field which needs more security is the mobile ad hoc network. Mobile Ad-hoc Network is a temporary network composed of mobile nodes, connected by wireless links, without fixed infrastructure. Network security plays a crucial role in this MANET and the traditional way of protecting the networks through firewalls and encryption software is no longer effective and sufficient. In order to provide additional security to the MANET, intrusion detection mechanisms should be added. In this paper, selective acknowledgment is used for detecting malicious nodes in the Mobile ad-hoc network is proposed. In this paper we propose a novel mechanism called selective acknowledgment for solving problems that airse with Adaptive ACKnowledgment (AACK). This mechanism is an enhancement to the AACK scheme where its Packet delivery ration and detection overhead is reduced. NS2 is used to simulate and evaluate the proposed scheme and compare it against the AACK. The obtained results show that the selective acknowledgment scheme outperforms AACK in terms of network packet delivery ratio and routing overhead.

Choi, Hongjun, Lee, Wen-Chuan, Aafer, Yousra, Fei, Fan, Tu, Zhan, Zhang, Xiangyu, Xu, Dongyan, Deng, Xinyan.  2018.  Detecting Attacks Against Robotic Vehicles: A Control Invariant Approach. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :801–816.
Robotic vehicles (RVs), such as drones and ground rovers, are a type of cyber-physical systems that operate in the physical world under the control of computing components in the cyber world. Despite RVs' robustness against natural disturbances, cyber or physical attacks against RVs may lead to physical malfunction and subsequently disruption or failure of the vehicles' missions. To avoid or mitigate such consequences, it is essential to develop attack detection techniques for RVs. In this paper, we present a novel attack detection framework to identify external, physical attacks against RVs on the fly by deriving and monitoring Control Invariants (CI). More specifically, we propose a method to extract such invariants by jointly modeling a vehicle's physical properties, its control algorithm and the laws of physics. These invariants are represented in a state-space form, which can then be implemented and inserted into the vehicle's control program binary for runtime invariant check. We apply our CI framework to eleven RVs, including quadrotor, hexarotor, and ground rover, and show that the invariant check can detect three common types of physical attacks – including sensor attack, actuation signal attack, and parameter attack – with very low runtime overhead.
Belikovetsky, S., Solewicz, Y., Yampolskiy, M., Toh, J., Elovici, Y..  2018.  Digital Audio Signature for 3D Printing Integrity. IEEE Transactions on Information Forensics and Security. :1–1.

Additive manufacturing (AM, or 3D printing) is a novel manufacturing technology that has been adopted in industrial and consumer settings. However, the reliance of this technology on computerization has raised various security concerns. In this paper, we address issues associated with sabotage via tampering during the 3D printing process by presenting an approach that can verify the integrity of a 3D printed object. Our approach operates on acoustic side-channel emanations generated by the 3D printer’s stepper motors, which results in a non-intrusive and real-time validation process that is difficult to compromise. The proposed approach constitutes two algorithms. The first algorithm is used to generate a master audio fingerprint for the verifiable unaltered printing process. The second algorithm is applied when the same 3D object is printed again, and this algorithm validates the monitored 3D printing process by assessing the similarity of its audio signature with the master audio fingerprint. To evaluate the quality of the proposed thresholds, we identify the detectability thresholds for the following minimal tampering primitives: insertion, deletion, replacement, and modification of a single tool path command. By detecting the deviation at the time of occurrence, we can stop the printing process for compromised objects, thus saving time and preventing material waste. We discuss various factors that impact the method, such as background noise, audio device changes and different audio recorder positions.

Madhupriya, G., Shalinie, S. M., Rajeshwari, A. R..  2018.  Detecting DDoS Attack in Cloud Computing Using Local Outlier Factors. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :859–863.

Now a days, Cloud computing has brought a unbelievable change in companies, organizations, firm and institutions etc. IT industries is advantage with low investment in infrastructure and maintenance with the growth of cloud computing. The Virtualization technique is examine as the big thing in cloud computing. Even though, cloud computing has more benefits; the disadvantage of the cloud computing environment is ensuring security. Security means, the Cloud Service Provider to ensure the basic integrity, availability, privacy, confidentiality, authentication and authorization in data storage, virtual machine security etc. In this paper, we presented a Local outlier factors mechanism, which may be helpful for the detection of Distributed Denial of Service attack in a cloud computing environment. As DDoS attack becomes strong with the passing of time, and then the attack may be reduced, if it is detected at first. So we fully focused on detecting DDoS attack to secure the cloud environment. In addition, our scheme is able to identify their possible sources, giving important clues for cloud computing administrators to spot the outliers. By using WEKA (Waikato Environment for Knowledge Analysis) we have analyzed our scheme with other clustering algorithm on the basis of higher detection rates and lower false alarm rate. DR-LOF would serve as a better DDoS detection tool, which helps to improve security framework in cloud computing.

Kronjee, Jorrit, Hommersom, Arjen, Vranken, Harald.  2018.  Discovering Software Vulnerabilities Using Data-flow Analysis and Machine Learning. Proceedings of the 13th International Conference on Availability, Reliability and Security. :6:1–6:10.

We present a novel method for static analysis in which we combine data-flow analysis with machine learning to detect SQL injection (SQLi) and Cross-Site Scripting (XSS) vulnerabilities in PHP applications. We assembled a dataset from the National Vulnerability Database and the SAMATE project, containing vulnerable PHP code samples and their patched versions in which the vulnerability is solved. We extracted features from the code samples by applying data-flow analysis techniques, including reaching definitions analysis, taint analysis, and reaching constants analysis. We used these features in machine learning to train various probabilistic classifiers. To demonstrate the effectiveness of our approach, we built a tool called WIRECAML, and compared our tool to other tools for vulnerability detection in PHP code. Our tool performed best for detecting both SQLi and XSS vulnerabilities. We also tried our approach on a number of open-source software applications, and found a previously unknown vulnerability in a photo-sharing web application.

Danyk, Y., Shestakov, V..  2018.  The detection of hybrid vulnerabilities and effects on the basis of analyzing the information activity in cyberspace. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). :574–577.

The report presents the results of the investigations into the effects of the information hybrid threats through cyberspace on social, technical, socio and technical systems. The composition of the system of early efficient detection of the above hybrids is suggested. The results of the structural and parametric synthesis of the system are described. The recommendations related to the system implementation are given.

Leal, A. G., Teixeira, Í C..  2018.  Development of a suite of IPv6 vulnerability scanning tests using the TTCN-3 language. 2018 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.

With the transition from IPv4 IPv6 protocol to improve network communications, there are concerns about devices and applications' security that must be dealt at the beginning of implementation or during its lifecycle. Automate the vulnerability assessment process reduces management overhead, enabling better management of risks and control of the vulnerabilities. Consequently, it reduces the effort needed for each test and it allows the increase of the frequency of application, improving time management to perform all the other complicated tasks necessary to support a secure network. There are several researchers involved in tests of vulnerability in IPv6 networks, exploiting addressing mechanisms, extension headers, fragmentation, tunnelling or dual-stack networks (using both IPv4 and IPv6 at the same time). Most existing tools use the programming languages C, Java, and Python instead of a language designed specifically to create a suite of tests, which reduces maintainability and extensibility of the tests. This paper presents a solution for IPv6 vulnerabilities scan tests, based on attack simulations, combining passive analysis (observing the manifestation of behaviours of the system under test) and an active one (stimulating the system to become symptomatic). Also, it describes a prototype that simulates and detects denial-of-service attacks on the ICMPv6 Protocol from IPv6. Also, a detailed report is created with the identified vulnerability and the possible existing solutions to mitigate such a gap, thus assisting the process of vulnerability management.

2019-01-16
Chen, Muhao, Zhao, Qi, Du, Pengyuan, Zaniolo, Carlo, Gerla, Mario.  2018.  Demand-driven Cache Allocation Based on Context-aware Collaborative Filtering. Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. :302–303.
Many recent advances of network caching focus on i) more effectively modeling the preferences of a regional user group to different web contents, and ii) reducing the cost of content delivery by storing the most popular contents in regional caches. However, the context under which the users interact with the network system usually causes tremendous variations in a user group's preferences on the contents. To effectively leverage such contextual information for more efficient network caching, we propose a novel mechanism to incorporate context-aware collaborative filtering into demand-driven caching. By differentiating the characterization of user interests based on a priori contexts, our approach seeks to enhance the cache performance with a more dynamic and fine-grained cache allocation process. In particular, our approach is general and adapts to various types of context information. Our evaluation shows that this new approach significantly outperforms previous non-demand-driven caching strategies by offering much higher cached content rate, especially when utilizing the contextual information.
Lu, Chris Xiaoxuan, Du, Bowen, Zhao, Peijun, Wen, Hongkai, Shen, Yiran, Markham, Andrew, Trigoni, Niki.  2018.  Deepauth: In-situ Authentication for Smartwatches via Deeply Learned Behavioural Biometrics. Proceedings of the 2018 ACM International Symposium on Wearable Computers. :204–207.

This paper proposes DeepAuth, an in-situ authentication framework that leverages the unique motion patterns when users entering passwords as behavioural biometrics. It uses a deep recurrent neural network to capture the subtle motion signatures during password input, and employs a novel loss function to learn deep feature representations that are robust to noise, unseen passwords, and malicious imposters even with limited training data. DeepAuth is by design optimised for resource constrained platforms, and uses a novel split-RNN architecture to slim inference down to run in real-time on off-the-shelf smartwatches. Extensive experiments with real-world data show that DeepAuth outperforms the state-of-the-art significantly in both authentication performance and cost, offering real-time authentication on a variety of smartwatches.

Azhagumurgan, R., Sivaraman, K., Ramachandran, S. S., Yuvaraj, R., Veeraraghavan, A. K..  2018.  Design and Development of Acoustic Power Transfer Using Infrasonic Sound. 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). :43–46.
Wireless transmission of power has been in research for over a century. Our project aims at transmitting electric power over a distance of room. Various methods using microwaves, lasers, inductive coupling, capacitive coupling and acoustic medium have been used. In our project, we are majorly focusing on acoustic method of transferring power. Previous attempts of transferring power using acoustic methods have employed the usage of ultrasonic sound. In our project, we are using infrasonic sound as a medium to transfer electrical power. For this purpose, we are using suitable transducers and converters to transmit electric power from the 220V AC power supply to a load over a considerable distance. This technology can be used to wirelessly charge various devices more effectively.
Choo, Young-Yeol, Ha, Yong-Jun, Kim, Young-Bu, Lee, Sang-Jin, Choi, Hyun-Deuk.  2018.  Development of CoAP-based IoT Communication System for Smart Energy Storage System. Proceedings of the 2Nd International Symposium on Computer Science and Intelligent Control. :21:1–21:5.

Wireless Internet of Things (IoT) devices share several features such as limited energy supply, low computing power, limited memory size, and vulnerable radio communication network. IETF proposed the Constrained Application Protocol (CoAP) for this type of network. This paper presents implementation of CoAP into an embedded IoT device used for smart Energy Storage System (ESS) under microgrid environment. Confirmable message type was adopted to provide reliable communication. Since the frame size of IEEE 802.15.4 physical layer was limited to 127 bytes, the header of 6LoWPAN and UDP was compressed to reduce fragmentation and reassembly overhead. Performance of the communication service was tested by measuring round trip time between two end nodes of developed system.

Ayers, Hudson, Crews, Paul Thomas, Teo, Hubert Hua Kian, McAvity, Conor, Levy, Amit, Levis, Philip.  2018.  Design Considerations for Low Power Internet Protocols. Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems. :317–318.
Examining implementations of the 6LoWPAN Internet Standard in major embedded operating systems, we observe that they do not fully interoperate. We find this is due to some inherent design flaws in 6LoWPAN. We propose and demonstrate four principles that can be used to structure protocols for low power devices that encourage interoperability between diverse implementations.
Choudhary, S., Kesswani, N..  2018.  Detection and Prevention of Routing Attacks in Internet of Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1537–1540.

Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.

Honggang, Zhao, Chen, Shi, Leyu, Zhai.  2018.  Design and Implementation of Lightweight 6LoWPAN Gateway Based on Contiki - IEEE Conference Publication.

6LoWPAN technology realizes the IPv6 packet transmission in the IEEE 802.15.4 based WSN. And 6LoWPAN is regarded as one of the ideal technologies to realize the interconnection between WSN and Internet, which is the key to build the IoT. Contiki is an open source and highly portable multitasking operating system, in which the 6LoWPAN has been implemented. In contiki, only several K Bytes of code and a few hundred bytes of memory are required to provide a multitasking environment and built-in TCP/IP support. This makes it especially suitable for memory constrained embedded platforms. In this paper, a lightweight 6LoWPAN gateway based on Contiki is designed and its designs of hardware and software are described. A complex experiment environment is presented, in which the gateway's capability of accessing the Internet is verified, and its performance about the average network delay and jitter are analyzed. The experimental results show that the gateway designed in this paper can not only realize the interconnection between 6LoWPAN networks and Internet, but also have good network adaptability and stability.