Biblio
As cloud computing becomes prevalent, more and more data owners are likely to outsource their data to a cloud server. However, to ensure privacy, the data should be encrypted before outsourcing. Symmetric searchable encryption allows users to retrieve keyword over encrypted data without decrypting the data. Many existing schemes that are based on symmetric searchable encryption only support single keyword search, conjunctive keywords search, multiple keywords search, or single phrase search. However, some schemes, i.e., static schemes, only search one phrase in a query request. In this paper, we propose a multi-phrase ranked search over encrypted cloud data, which also supports dynamic update operations, such as adding or deleting files. We used an inverted index to record the locations of keywords and to judge whether the phrase appears. This index can search for keywords efficiently. In order to rank the results and protect the privacy of relevance score, the relevance score evaluation model is used in searching process on client-side. Also, the special construction of the index makes the scheme dynamic. The data owner can update the cloud data at very little cost. Security analyses and extensive experiments were conducted to demonstrate the safety and efficiency of the proposed scheme.
Distributed Denial of Service (DDoS) attacks serve to diminish the ability of the network to perform its intended function over time. The paper presents the design, implementation and analysis of a protocol based upon a technique for address agility called DDoS Resistant Multicast (DRM). After describing the our architecture and implementation we show an analysis that quantifies the overhead on network performance. We then present the Simple Agile RPL multiCAST (SARCAST), an Internet-of-Things routing protocol for DDoS protection. We have implemented and evaluated SARCAST in a working IoT operating system and testbed. Our results show that SARCAST provides very high levels of protection against DDoS attacks with virtually no impact on overall performance.
The ability to discover patterns of interest in criminal networks can support and ease the investigation tasks by security and law enforcement agencies. By considering criminal networks as a special case of social networks, we can properly reuse most of the state-of-the-art techniques to discover patterns of interests, i.e., hidden and potential links. Nevertheless, in time-sensible scenarios, like the one involving criminal actions, the ability to discover patterns in a (near) real-time manner can be of primary importance.In this paper, we investigate the identification of patterns for link detection and prediction on an evolving criminal network. To extract valuable information as soon as data is generated, we exploit a stream processing approach. To this end, we also propose three new similarity social network metrics, specifically tailored for criminal link detection and prediction. Then, we develop a flexible data stream processing application relying on the Apache Flink framework; this solution allows us to deploy and evaluate the newly proposed metrics as well as the ones existing in literature. The experimental results show that the new metrics we propose can reach up to 83% accuracy in detection and 82% accuracy in prediction, resulting competitive with the state of the art metrics.
With the development of modern logistics industry railway freight enterprises as the main traditional logistics enterprises, the service mode is facing many problems. In the era of big data, for railway freight enterprises, coordinated development and sharing of information resources have become the requirements of the times, while how to protect the privacy of citizens has become one of the focus issues of the public. To prevent the disclosure or abuse of the citizens' privacy information, the citizens' privacy needs to be preserved in the process of information opening and sharing. However, most of the existing privacy preserving models cannot to be used to resist attacks with continuously growing background knowledge. This paper presents the method of applying differential privacy to protect associated data, which can be shared in railway freight service association information. First, the original service data need to slice by optimal shard length, then differential method and apriori algorithm is used to add Laplace noise in the Candidate sets. Thus the citizen's privacy information can be protected even if the attacker gets strong background knowledge. Last, sharing associated data to railway information resource partners. The steps and usefulness of the discussed privacy preservation method is illustrated by an example.
Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas.
Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.
Crowd management in urban settings has mostly relied on either classical, non-automated mechanisms or spontaneous notifications/alerts through social networks. Such management techniques are heavily marred by lack of comprehensive control, especially in terms of averting risks in a manner that ensures crowd safety and enables prompt emergency response. In this paper, we propose a Markov Decision Process Scheme MDP to realize a smart infrastructure that is directly aimed at crowd management. A key emphasis of the scheme is a robust and reliable scalability that provides sufficient flexibility to manage a mixed crowd (i.e., pedestrian, cyclers, manned vehicles and unmanned vehicles). The infrastructure also spans various population settings (e.g., roads, buildings, game arenas, etc.). To realize a reliable and scalable crowd management scheme, the classical MDP is decomposed into Local MDPs with smaller action-state spaces. Preliminarily results show that the MDP decomposition can reduce the system global cost and facilitate fast convergence to local near-optimal solution for each L-MDP.
Graph analysis can capture relationships between network entities and can be used to identify and rank anomalous hosts, users, or applications from various types of cyber logs. It is often the case that the data in the logs can be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with situational awareness and even insights to potential attacks on enterprise scale networks. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. We also present methodologies to further narrow returned results to anomalous/outlier cases that may be indicative of a cyber security event. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite.
Scan-based test is commonly used to increase testability and fault coverage, however, it is also known to be a liability for chip security. Research has shown that intellectual property (IP) or secret keys can be leaked through scan-based attacks. In this paper, we propose a dynamically-obfuscated scan design for protecting IPs against scan-based attacks. By perturbing all test patterns/responses and protecting the obfuscation key, the proposed architecture is proven to be robust against existing non-invasive scan attacks, and can protect all scan data from attackers in foundry, assembly, and system developers (i.e., OEMs) without compromising the testability. Furthermore, the proposed architecture can be easily plugged into EDA generated scan chains without having a noticeable impact on conventional integrated circuit (IC) design, manufacturing, and test flow. Finally, detailed security and experimental analyses have been performed on several benchmarks. The results demonstrate that the proposed method can protect chips from existing brute force, differential, and other scan-based attacks that target the obfuscation key. The proposed design is of low overhead on area, power consumption, and pattern generation time, and there is no impact on test time.
In 2007, Shacham published a seminal paper on Return-Oriented Programming (ROP), the first systematic formulation of code reuse. The paper has been highly influential, profoundly shaping the way we still think about code reuse today: an attacker analyzes the "geometry" of victim binary code to locate gadgets and chains these to craft an exploit. This model has spurred much research, with a rapid progression of increasingly sophisticated code reuse attacks and defenses over time. After ten years, the common perception is that state-of-the-art code reuse defenses are effective in significantly raising the bar and making attacks exceedingly hard. In this paper, we challenge this perception and show that an attacker going beyond "geometry" (static analysis) and considering the "dynamics" (dynamic analysis) of a victim program can easily find function call gadgets even in the presence of state-of-the-art code-reuse defenses. To support our claims, we present Newton, a run-time gadget-discovery framework based on constraint-driven dynamic taint analysis. Newton can model a broad range of defenses by mapping their properties into simple, stackable, reusable constraints, and automatically generate gadgets that comply with these constraints. Using Newton, we systematically map and compare state-of-the-art defenses, demonstrating that even simple interactions with popular server programs are adequate for finding gadgets for all state-of-the-art code-reuse defenses. We conclude with an nginx case study, which shows that a Newton-enabled attacker can craft attacks which comply with the restrictions of advanced defenses, such as CPI and context-sensitive CFI.
As cloud computing becomes increasingly pervasive, it is critical for cloud providers to support basic security controls. Although major cloud providers tout such features, relatively little is known in many cases about their design and implementation. In this paper, we describe several security features in OpenStack, a widely-used, open source cloud computing platform. Our contributions to OpenStack range from key management and storage encryption to guaranteeing the integrity of virtual machine (VM) images prior to boot. We describe the design and implementation of these features in detail and provide a security analysis that enumerates the threats that each mitigates. Our performance evaluation shows that these security features have an acceptable cost-in some cases, within the measurement error observed in an operational cloud deployment. Finally, we highlight lessons learned from our real-world development experiences from contributing these features to OpenStack as a way to encourage others to transition their research into practice.
As the use of low-power and low resource embedded devices continues to increase dramatically with the introduction of new Internet of Things (IoT) devices, security techniques are necessary which are compatible with these devices. This research advances the knowledge in the area of cyber security for the IoT through the exploration of a moving target defense to apply for limiting the time attackers may conduct reconnaissance on embedded systems while considering the challenges presented from IoT devices such as resource and performance constraints. We introduce the design and optimizations for a Micro-Moving Target IPv6 Defense including a description of the modes of operation, needed protocols, and use of lightweight hash algorithms. We also detail the testing and validation possibilities including a Cooja simulation configuration, and describe the direction to further enhance and validate the security technique through large scale simulations and hardware testing followed by providing information on other future considerations.
Among the several threats to cyber services Distributed denial-of-service (DDoS) attack is most prevailing nowadays. DDoS involves making an online service unavailable by flooding the bandwidth or resources of a targeted system. It is easier for an insider having legitimate access to the system to circumvent any security controls thus resulting in insider attack. To mitigate insider assisted DDoS attacks, this paper proposes a moving target defense mechanism that involves isolation of insiders from innocent clients by using attack proxies. Further using the concept of load balancing an effective algorithm to detect and handle insider attack is developed with the aim of maximizing attack isolation while minimizing the total number of proxies used.
As DDOS attacks interrupt internet services, DDOS tools confirm the effectiveness of the current attack. DDOS attack and countermeasures continue to increase in number and complexity. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. A contemporary escalation of application layer distributed denial of service attacks on the web services has quickly transferred the focus of the research community from conventional network based denial of service. As a result, new genres of attacks were explored like HTTP GET Flood, HTTP POST Flood, Slowloris, R-U-Dead-Yet (RUDY), DNS etc. Also after a brief introduction to DDOS attacks, we discuss the characteristics of newly proposed application layer distributed denial of service attacks and embellish their impact on modern web services.
Securing Internet of Things (IoT) systems is a challenge because of its multiple points of vulnerability. A spate of recent hacks and security breaches has unveiled glaring vulnerabilities in the IoT. Due to the computational and memory requirement constraints associated with anomaly detection algorithms in core networks, commercial in-line (part of the direct line of communication) Anomaly Detection Systems (ADSs) rely on sampling-based anomaly detection approaches to achieve line rates and truly-inline anomaly detection accuracy in real-time. However, packet sampling is inherently a lossy process which might provide an incomplete and biased approximation of the underlying traffic patterns. Moreover, commercial routers uses proprietary software making them closed to be manipulated from the outside. As a result, detecting malicious packets on the given network path is one of the most challenging problems in the field of network security. We argue that the advent of Software Defined Networking (SDN) provides a unique opportunity to effectively detect and mitigate DDoS attacks. Unlike sampling-based approaches for anomaly detection and limitation of proprietary software at routers, we use the SDN infrastructure to relax the sampling-based ADS constraints and collect traffic flow statistics which are maintained at each SDN-enabled switch to achieve high detection accuracy. In order to implement our idea, we discuss how to mitigate DDoS attacks using the features of SDN infrastructure.
With the advent of smart devices and lowering prices of sensing devices, adoption of Internet of Things (IoT) is gaining momentum. These IoT devices come with greater threat of being attacked or compromised that could lead to Denial of Service (DoS) and Distributed Denial of Service (DDoS). The high volume of IoT devices with high level of heterogeneity, magnify the possibility of security threats. So far, there is no protocol to guarantee the security of IoT devices. But to enable resilience, continuous monitoring is required along with adaptive decision making. These challenges can be addressed with the help of Software Defined Networking (SDN) which can effectively handle the security threats to the IoT devices in dynamic and adaptive manner without any burden on the IoT devices. In this paper, we propose an SDN-based secure IoT framework called SoftThings to detect abnormal behaviors and attacks as early as possible and mitigate as appropriate. Machine Learning is used at the SDN controller to monitor and learn the behavior of IoT devices over time. We have conducted experiments on Mininet emulator. Initial results show that this framework is capable to detect attacks on IoT with around 98% precision.
A technique and algorithms for early detection of the started attack and subsequent blocking of malicious traffic are proposed. The primary separation of mixed traffic into trustworthy and malicious traffic was carried out using cluster analysis. Classification of newly arrived requests was done using different classifiers with the help of received training samples and developed success criteria.
One of the recent focuses in Cloud Computing networks is Software Defined Clouds (SDC), where the Software-Defined Networking (SDN) technology is combined with the traditional Cloud network. SDC is aimed to create an effective Cloud environment by extending the virtualization concept to all resources. In that, the control plane is decoupled from the data plane in a network device and controlled by the centralized controller using the OpenFlow Protocol (OFP). As the centralized controller performs all control functions in a network, it requires strong security. Already, Cloud Computing faces many security challenges. Most vulnerable attacks in SDC is Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks. To overcome the DoS attacks, we propose a distributed Firewall with Intrusion Prevention System (IPS) for SDC. The proposed distributed security mechanism is investigated for two DoS attacks, ICMP and SYN flooding attacks for different network scenarios. From the simulation results and discussion, we showed that the distributed Firewall with IPS security detects and prevents the DoS attack effectively.
Distributed Denial of Service (DDoS) attack is a congestion-based attack that makes both the network and host-based resources unavailable for legitimate users, sending flooding attack packets to the victim's resources. The non-existence of predefined rules to correctly identify the genuine network flow made the task of DDoS attack detection very difficult. In this paper, a combination of unsupervised data mining techniques as intrusion detection system are introduced. The entropy concept in term of windowing the incoming packets is applied with data mining technique using Clustering Using Representative (CURE) as cluster analysis to detect the DDoS attack in network flow. The data is mainly collected from DARPA2000, CAIDA2007 and CAIDA2008 datasets. The proposed approach has been evaluated and compared with several existing approaches in terms of accuracy, false alarm rate, detection rate, F. measure and Phi coefficient. Results indicates the superiority of the proposed approach with four out five detected phases, more than 99% accuracy rate 96.29% detection rate, around 0% false alarm rate 97.98% F-measure, and 97.98% Phi coefficient.
Aiming at the problem of internal attackers of database system, anomaly detection method of user behaviour is used to detect the internal attackers of database system. With using Discrete-time Markov Chains (DTMC), an anomaly detection system of user behavior is proposed, which can detect the internal threats of database system. First, we make an analysis on SQL queries, which are user behavior features. Then, we use DTMC model extract behavior features of a normal user and the detected user and make a comparison between them. If the deviation of features is beyond threshold, the detected user behavior is judged as an anomaly behavior. The experiments are used to test the feasibility of the detction system. The experimental results show that this detction system can detect normal and abnormal user behavior precisely and effectively.
This paper proposes a novel recursive hashing scheme, in contrast to conventional "one-off" based hashing algorithms. Inspired by human's "nonsalient-to-salient" perception path, the proposed hashing scheme generates a series of binary codes based on progressively expanded salient regions. Built on a recurrent deep network, i.e., LSTM structure, the binary codes generated from later output nodes naturally inherit information aggregated from previously codes while explore novel information from the extended salient region, and therefore it possesses good scalability property. The proposed deep hashing network is trained via minimizing a triplet ranking loss, which is end-to-end trainable. Extensive experimental results on several image retrieval benchmarks demonstrate good performance gain over state-of-the-art image retrieval methods and its scalability property.