Biblio
In this paper, we propose a technique to detect phishing attacks based on behavior of human when exposed to fake website. Some online users submit fake credentials to the login page before submitting their actual credentials. He/She observes the login status of the resulting page to check whether the website is fake or legitimate. We automate the same behavior with our application (FeedPhish) which feeds fake values into login page. If the web page logs in successfully, it is classified as phishing otherwise it undergoes further heuristic filtering. If the suspicious site passes through all heuristic filters then the website is classified as a legitimate site. As per the experimentation results, our application has achieved a true positive rate of 97.61%, true negative rate of 94.37% and overall accuracy of 96.38%. Our application neither demands third party services nor prior knowledge like web history, whitelist or blacklist of URLS. It is able to detect not only zero-day phishing attacks but also detects phishing sites which are hosted on compromised domains.
As the Internet of Thing (IoT) matures, a lot of concerns are being raised about security, privacy and interoperability. The Web of Things (WoT) model leverages web technologies to improve interoperability. Due to its distributed components, the web scaled well beyond initial expectations. Still, secure authentication and communication across organization boundaries rely on the Public Key Infrastructure (PKI) which is a non-transparent, centralized single point of failure. We can improve transparency and reduce the chain of trust–-thus significantly improving the IoT security–-by empowering blockchain technology and web security standards. In this paper, we build a scalable, decentralized IoT-centric PKI and discuss how we can combine it with the emerging web authentication and authorization framework for constrained environments.
The Internet is becoming more and more content-oriented. CDN (Content Distribution Networks) has been a popular architecture compatible with the current Internet, and a new revolutionary paradigm such as ICN (Information Centric Networking) has studied. One of the main components in both CDN and ICN is considering cache on network. Despite a surge of extensive use of cache in the current and future Internet architectures, analysis on the performance of general cache networks are still quite limited due to complex inter-plays among various components and thus analytical intractability. Due to mathematical tractability, we consider 'static' cache policies and study asymptotic delay performance of those policies in cache networks, in particular, focusing on the impact of heterogeneous content popularities and nodes' geographical 'importances' in caching policies. Furthermore, our simulation results suggest that they perform quite similarly as popular 'dynamic' policies such as LFU (Least-Frequently-Used) and LRU (Least-Recently-Used). We believe that our theoretical findings provide useful engineering implications such as when and how various factors have impact on caching performance.
Deregulated electricity markets rely on a two-settlement system consisting of day-ahead and real-time markets, across which electricity price is volatile. In such markets, locational marginal pricing is widely adopted to set electricity prices and manage transmission congestion. Locational marginal prices are vulnerable to measurement errors. Existing studies show that if the adversaries are omniscient, they can design profitable attack strategies without being detected by the residue-based bad data detectors. This paper focuses on a more realistic setting, in which the attackers have only partial and imperfect information due to their limited resources and restricted physical access to the grid. Specifically, the attackers are assumed to have uncertainties about the state of the grid, and the uncertainties are modeled stochastically. Based on this model, this paper offers a framework for characterizing the optimal stochastic guarantees for the effectiveness of the attacks and the associated pricing impacts.
This paper proposes a method to detect two primary means of using the Domain Name System (DNS) for malicious purposes. We develop machine learning models to detect information exfiltration from compromised machines and the establishment of command & control (C&C) servers via tunneling. We validate our approach by experiments where we successfully detect a malware used in several recent Advanced Persistent Threat (APT) attacks [1]. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.
Advanced Persistent Threats are increasingly becoming one of the major concerns to many industries and organizations. Currently, there exists numerous articles and industrial reports describing various case studies of recent notable Advanced Persistent Threat attacks. However, these documents are expressed in natural language. This limits the efficient reusability of the threat intelligence information due to ambiguous nature of the natural language. In this article, we propose a model to formally represent Advanced Persistent Threats as multi-agent systems. Our model is inspired by the concepts of agent-oriented social modelling approaches, generally used for software security requirement analysis.
The wireless spectrum is a scarce resource, and the number of wireless terminals is constantly growing. One way to mitigate this strong constraint for wireless traffic is the use of dynamic mechanisms to utilize the spectrum, such as cognitive and software-defined radios. This is especially important for the upcoming wireless sensor and actuator networks in aircraft, where real-time guarantees play an important role in the network. Future wireless networks in aircraft need to be scalable, cater to the specific requirements of avionics (e.g., standardization and certification), and provide interoperability with existing technologies. In this paper, we demonstrate that dynamic network reconfigurability is a solution to the aforementioned challenges. We supplement this claim by surveying several flexible approaches in the context of wireless sensor and actuator networks in aircraft. More specifically, we examine the concept of dynamic resource management, accomplished through more flexible transceiver hardware and by employing dedicated spectrum agents. Subsequently, we evaluate the advantages of cross-layer network architectures which overcome the fixed layering of current network stacks in an effort to provide quality of service for event-based and time-triggered traffic. Lastly, the challenges related to implementation of the aforementioned mechanisms in wireless sensor and actuator networks in aircraft are elaborated, and key requirements to future research are summarized.
Data Deduplication provides lots of benefits to security and privacy issues which can arise as user's sensitive data at risk of within and out of doors attacks. Traditional secret writing that provides knowledge confidentiality is incompatible with knowledge deduplication. Ancient secret writing wants completely different users to encode their knowledge with their own keys. Thus, identical knowledge copies of completely different various users can result in different ciphertexts that makes Deduplication not possible. Convergent secret writing has been planned to enforce knowledge confidentiality whereas creating Deduplication possible. It encrypts/decrypts a knowledge copy with a confluent key, that is obtained by computing the cryptographical hash price of the content of the information copy. Once generation of key and encryption, the user can retain the keys and send ciphertext to cloud.
In the multi-robot applications, the maintained and desired network may be destroyed by failed robots. The existing self-healing algorithms only handle with the case of single robot failure, however, multiple robot failures may cause several challenges, such as disconnected network and conflicts among repair paths. This paper presents a distributed self-healing algorithm based on 2-hop neighbor infomation to resolve the problems caused by multiple robot failures. Simulations and experiment show that the proposed algorithm manages to restore connectivity of the mobile robot network and improves the synchronization of the network globally, which validate the effectiveness of the proposed algorithm in resolving multiple robot failures.
Crypto-ransomware is a challenging threat that ciphers a user's files while hiding the decryption key until a ransom is paid by the victim. This type of malware is a lucrative business for cybercriminals, generating millions of dollars annually. The spread of ransomware is increasing as traditional detection-based protection, such as antivirus and anti-malware, has proven ineffective at preventing attacks. Additionally, this form of malware is incorporating advanced encryption algorithms and expanding the number of file types it targets. Cybercriminals have found a lucrative market and no one is safe from being the next victim. Encrypting ransomware targets business small and large as well as the regular home user. This paper discusses ransomware methods of infection, technology behind it and what can be done to help prevent becoming the next victim. The paper investigates the most common types of crypto-ransomware, various payload methods of infection, typical behavior of crypto ransomware, its tactics, how an attack is ordinarily carried out, what files are most commonly targeted on a victim's computer, and recommendations for prevention and safeguards are listed as well.
Whilst the fundamental composition of digital forensic readiness have been expounded by myriad literature, the integration of behavioral modalities have not been considered. Behavioral modalities such as keystroke and mouse dynamics are key components of human behavior that have been widely used in complementing security in an organization. However, these modalities present better forensic properties, thus more relevant in investigation/incident response, than its deployment in security. This study, therefore, proposes a forensic framework which encompasses a step-by-step guide on how to integrate behavioral biometrics into digital forensic readiness process. The proposed framework, behavioral biometrics-based digital forensics readiness framework (BBDFRF) comprised four phases which include data acquisition, preservation, user-authentication, and user pattern attribution phase. The proposed BBDFRF is evaluated in line with the ISO/IEC 27043 standard for proactive forensics, to address the gap on the integration of the behavioral biometrics into proactive forensics. BBDFRF thus extends the body of literature on the forensic capability of behavioral biometrics. The implementation of this framework can be used to also strengthen the security mechanism of an organization, particularly on continuous authentication.
Acoustic emanations of computer keyboards represent a serious privacy issue. As demonstrated in prior work, physical properties of keystroke sounds might reveal what a user is typing. However, previous attacks assumed relatively strong adversary models that are not very practical in many real-world settings. Such strong models assume: (i) adversary's physical proximity to the victim, (ii) precise profiling of the victim's typing style and keyboard, and/or (iii) significant amount of victim's typed information (and its corresponding sounds) available to the adversary. This paper presents and explores a new keyboard acoustic eavesdropping attack that involves Voice-over-IP (VoIP), called Skype & Type (S&T), while avoiding prior strong adversary assumptions. This work is motivated by the simple observation that people often engage in secondary activities (including typing) while participating in VoIP calls. As expected, VoIP software acquires and faithfully transmits all sounds, including emanations of pressed keystrokes, which can include passwords and other sensitive information. We show that one very popular VoIP software (Skype) conveys enough audio information to reconstruct the victim's input – keystrokes typed on the remote keyboard. Our results demonstrate that, given some knowledge on the victim's typing style and keyboard model, the attacker attains top-5 accuracy of 91.7% in guessing a random key pressed by the victim. Furthermore, we demonstrate that S&T is robust to various VoIP issues (e.g., Internet bandwidth fluctuations and presence of voice over keystrokes), thus confirming feasibility of this attack. Finally, it applies to other popular VoIP software, such as Google Hangouts.
Device drivers are an essential part in modern Unix-like systems to handle operations on physical devices, from hard disks and printers to digital cameras and Bluetooth speakers. The surge of new hardware, particularly on mobile devices, introduces an explosive growth of device drivers in system kernels. Many such drivers are provided by third-party developers, which are susceptible to security vulnerabilities and lack proper vetting. Unfortunately, the complex input data structures for device drivers render traditional analysis tools, such as fuzz testing, less effective, and so far, research on kernel driver security is comparatively sparse. In this paper, we present DIFUZE, an interface-aware fuzzing tool to automatically generate valid inputs and trigger the execution of the kernel drivers. We leverage static analysis to compose correctly-structured input in the userspace to explore kernel drivers. DIFUZE is fully automatic, ranging from identifying driver handlers, to mapping to device file names, to constructing complex argument instances. We evaluate our approach on seven modern Android smartphones. The results show that DIFUZE can effectively identify kernel driver bugs, and reports 32 previously unknown vulnerabilities, including flaws that lead to arbitrary code execution.
This paper introduces a cryptographic protocol for efficiently aggregating a count of unique items across a set of data parties privately - that is, without exposing any information other than the count. Our protocol allows for more secure and useful statistics gathering in privacy-preserving distributed systems such as anonymity networks; for example, it allows operators of anonymity networks such as Tor to securely answer the questions: how many unique users are using the distributed service? and how many hidden services are being accessed?. We formally prove the correctness and security of our protocol in the Universal Composability framework against an active adversary that compromises all but one of the aggregation parties. We also show that the protocol provides security against adaptive corruption of the data parties, which prevents them from being victims of targeted compromise. To ensure safe measurements, we also show how the output can satisfy differential privacy. We present a proof-of-concept implementation of the private set-union cardinality protocol (PSC) and use it to demonstrate that PSC operates with low computational overhead and reasonable bandwidth. In particular, for reasonable deployment sizes, the protocol run at timescales smaller than the typical measurement period would be and thus is suitable for distributed measurement.
Speech recognition (SR) systems such as Siri or Google Now have become an increasingly popular human-computer interaction method, and have turned various systems into voice controllable systems (VCS). Prior work on attacking VCS shows that the hidden voice commands that are incomprehensible to people can control the systems. Hidden voice commands, though "hidden", are nonetheless audible. In this work, we design a totally inaudible attack, DolphinAttack, that modulates voice commands on ultrasonic carriers (e.g., f textgreater 20 kHz) to achieve inaudibility. By leveraging the nonlinearity of the microphone circuits, the modulated low-frequency audio commands can be successfully demodulated, recovered, and more importantly interpreted by the speech recognition systems. We validated DolphinAttack on popular speech recognition systems, including Siri, Google Now, Samsung S Voice, Huawei HiVoice, Cortana and Alexa. By injecting a sequence of inaudible voice commands, we show a few proof-of-concept attacks, which include activating Siri to initiate a FaceTime call on iPhone, activating Google Now to switch the phone to the airplane mode, and even manipulating the navigation system in an Audi automobile. We propose hardware and software defense solutions, and suggest to re-design voice controllable systems to be resilient to inaudible voice command attacks.
Robotic vehicles and especially autonomous robotic vehicles can be attractive targets for attacks that cross the cyber-physical divide, that is cyber attacks or sensory channel attacks affecting the ability to navigate or complete a mission. Detection of such threats is typically limited to knowledge-based and vehicle-specific methods, which are applicable to only specific known attacks, or methods that require computation power that is prohibitive for resource-constrained vehicles. Here, we present a method based on Bayesian Networks that can not only tell whether an autonomous vehicle is under attack, but also whether the attack has originated from the cyber or the physical domain. We demonstrate the feasibility of the approach on an autonomous robotic vehicle built in accordance with the Generic Vehicle Architecture specification and equipped with a variety of popular communication and sensing technologies. The results of experiments involving command injection, rogue node and magnetic interference attacks show that the approach is promising.
Usually, the air gap will appear inside the composite insulators and it will lead to serious accident. In order to detect these internal defects in composite insulators operated in the transmission lines, a new non-destructive technique has been proposed. In the study, the mathematical analysis model of the composite insulators inner defects, which is about heat diffusion, has been build. The model helps to analyze the propagation process of heat loss and judge the structure and defects under the surface. Compared with traditional detection methods and other non-destructive techniques, the technique mentioned above has many advantages. In the study, air defects of composite insulators have been made artificially. Firstly, the artificially fabricated samples are tested by flash thermography, and this method shows a good performance to figure out the structure or defects under the surface. Compared the effect of different excitation between flash and hair drier, the artificially samples have a better performance after heating by flash. So the flash excitation is better. After testing by different pollution on the surface, it can be concluded that different pollution don't have much influence on figuring out the structure or defect under the surface, only have some influence on heat diffusion. Then the defective composite insulators from work site are detected and the image of defect is clear. This new active thermography system can be detected quickly, efficiently and accurately, ignoring the influence of different pollution and other environmental restrictions. So it will have a broad prospect of figuring out the defeats and structure in composite insulators even other styles of insulators.
The state-of-the-art Android malware often encrypts or encodes malicious code snippets to evade malware detection. In this paper, such undetectable codes are called Mysterious Codes. To make such codes detectable, we design a system called Droidrevealer to automatically identify Mysterious Codes and then decode or decrypt them. The prototype of Droidrevealer is implemented and evaluated with 5,600 malwares. The results show that 257 samples contain the Mysterious Codes and 11,367 items are exposed. Furthermore, several sensitive behaviors hidden in the Mysterious Codes are disclosed by Droidrevealer.
The development of radar technology, Synthetic Aperture Radar (SAR) and Unmanned Aerial Vehicle (UAV) requires the communication facilities and infrastructures that have variety of platforms and high quality of image. In this paper, we obtain the basic configuration of triangle array antenna using corporate feeding-line for Circularly Polarized- Synthetic Aperture Radar (CP-SAR) sensor embedded on small UAV or drone airspace with compact, small, and simple configuration. The Method of Moments (MoM) is chosen in the numerical analysis for fast calculation of the unknown current on the patch antenna. The developing of triangle array antenna is consist of four patches of simple equilateral triangle patch with adding truncated corner of each patch and resonant frequency at f = 1.25 GHz. Proximity couple, perturbation segment, single feeding method are applied to generate the circular polarization wave from radiating patch. The corporate feeding-line design is implemented by combining some T-junctions to distribute the current from input port to radiating patch and to reach 2×2 patches. The performance results of this antenna, especially for gain and axial ratio (Ar) at the resonant frequency are 11.02 dBic and 2.47 dB, respectively. Furthermore, the two-beams appeared at boresight in elevation plane have similar values each other i.e. for average beamwidth of 10 dBic-gain and the 3 dB-Ar are about 20° and 70°, respectively.
This work applies side channel analysis on hardware implementations of two CAESAR candidates, Keyak and Ascon. Both algorithms are cryptographic sponges with an iterated permutation. The algorithms share an s-box so attacks on the non-linear step of the permutation are similar. This work presents the first results of a DPA attack on Keyak using traces generated by an FPGA. A new attack is crafted for a larger sensitive variable to reduce the number of traces. It also presents and applies the first CPA attack on Ascon. Using a toy-sized threshold implementation of Ascon we try to give insight in the order of the steps of a permutation.
Towards advancing the use of big keys as a practical defense against key exfiltration, this paper provides efficiency improvements for cryptographic schemes in the bounded retrieval model (BRM). We identify probe complexity (the number of scheme accesses to the slow storage medium storing the big key) as the dominant cost. Our main technical contribution is what we call the large-alphabet subkey prediction lemma. It gives good bounds on the predictability under leakage of a random sequence of blocks of the big key, as a function of the block size. We use it to significantly reduce the probe complexity required to attain a given level of security. Together with other techniques, this yields security-preserving performance improvements for BRM symmetric encryption schemes and BRM public-key identification schemes.
In recent years, with the advances in JavaScript engines and the adoption of HTML5 APIs, web applications begin to show a tendency to shift their functionality from the server side towards the client side, resulting in dense and complex interactions with HTML documents using the Document Object Model (DOM). As a consequence, client-side vulnerabilities become more and more prevalent. In this paper, we focus on DOM-sourced Cross-site Scripting (XSS), which is a kind of severe but not well-studied vulnerability appearing in browser extensions. Comparing with conventional DOM-based XSS, a new attack surface is introduced by DOM-sourced XSS where the DOM could become a vulnerable source as well besides common sources such as URLs and form inputs. To discover such vulnerability, we propose a detecting framework employing hybrid analysis with two phases. The first phase is the lightweight static analysis consisting of a text filter and an abstract syntax tree parser, which produces potential vulnerable candidates. The second phase is the dynamic symbolic execution with an additional component named shadow DOM, generating a document as a proof-of-concept exploit. In our large-scale real-world experiment, 58 previously unknown DOM-sourced XSS vulnerabilities were discovered in user scripts of the popular browser extension Greasemonkey.
In machine learning, feature engineering has been a pivotal stage in building a high-quality predictor. Particularly, this work explores the multiple Kernel Discriminant Component Analysis (mKDCA) feature-map and its variants. However, seeking the right subset of kernels for mKDCA feature-map can be challenging. Therefore, we consider the problem of kernel selection, and propose an algorithm based on Differential Mutual Information (DMI) and incremental forward search. DMI serves as an effective metric for selecting kernels, as is theoretically supported by mutual information and Fisher's discriminant analysis. On the other hand, incremental forward search plays a role in removing redundancy among kernels. Finally, we illustrate the potential of the method via an application in privacy-aware classification, and show on three mobile-sensing datasets that selecting an effective set of kernels for mKDCA feature-maps can enhance the utility classification performance, while successfully preserve the data privacy. Specifically, the results show that the proposed DMI forward search method can perform better than the state-of-the-art, and, with much smaller computational cost, can perform as well as the optimal, yet computationally expensive, exhaustive search.