Biblio
To penetrate sensitive computer networks, attackers can use spear phishing to sidestep technical security mechanisms by exploiting the privileges of careless users. In order to maximize their success probability, attackers have to target the users that constitute the weakest links of the system. The optimal selection of these target users takes into account both the damage that can be caused by a user and the probability of a malicious e-mail being delivered to and opened by a user. Since attackers select their targets in a strategic way, the optimal mitigation of these attacks requires the defender to also personalize the e-mail filters by taking into account the users' properties.
In this paper, we assume that a learned classifier is given and propose strategic per-user filtering thresholds for mitigating spear-phishing attacks. We formulate the problem of filtering targeted and non-targeted malicious e-mails as a Stackelberg security game. We characterize the optimal filtering strategies and show how to compute them in practice. Finally, we evaluate our results using two real-world datasets and demonstrate that the proposed thresholds lead to lower losses than nonstrategic thresholds.
An integrity checking and recovery (ICAR) system is presented here, which protects file system integrity and automatically restores modified files. The system enables files cryptographic hashes generation and verification, as well as configuration of security constraints. All of the crucial data, including ICAR system binaries, file backups and hashes database are stored in a physically write-protected storage to eliminate the threat of unauthorised modification. A buffering mechanism was designed and implemented in the system to increase operation performance. Additionally, the system supplies user tools for cryptographic hash generation and security database management. The system is implemented as a kernel extension, compliant with the Linux security model. Experimental evaluation of the system was performed and showed an approximate 10% performance degradation in secured file access compared to regular access.
Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.
In adaptive processing applications, the design of the adaptive filter requires estimation of the unknown interference-plus-noise covariance matrix from secondary training data. The presence of outliers in the training data can severely degrade the performance of adaptive processing. By exploiting the sparse prior of the outliers, a Bayesian framework to develop a computationally efficient outlier-resistant adaptive filter based on sparse Bayesian learning (SBL) is proposed. The expectation-maximisation (EM) algorithm is used therein to obtain a maximum a posteriori (MAP) estimate of the interference-plus-noise covariance matrix. Numerical simulations demonstrate the superiority of the proposed method over existing methods.
Vehicular ad-hoc networks (VANETs) provides infrastructure less, rapidly deployable, self-configurable network connectivity. The network is the collection vehicles interlinked by wireless links and willing to store and forward data for their peers. As vehicles move freely and organize themselves arbitrarily, message routing is done dynamically based on network connectivity. Compared with other ad-hoc networks, VANETs are particularly challenging due to the part of the vehicles' high rate of mobility and the numerous signal-weakening barrier, such as buildings, in their environments. Due to their enormous potential, VANET have gained an increasing attention in both industry and academia. Research activities range from lower layer protocol design to applications and implementation issues. A secure VANET system, while exchanging information should protect the system against unauthorized message injection, message alteration, eavesdropping. The security of VANET is one of the most critical issues because their information transmission is propagated in open access (wireless) environments. A few years back VANET has received increased attention as the potential technology to enhance active and preventive safety on the road, as well as travel comfort Safekeeping and privacy are mandatory in vehicular communications for a grateful acceptance and use of such technology. This paper is an attempt to highlight the problems occurred in Vehicular Ad hoc Networks and security issues.
Keeping up with rapid advances in research in various fields of Engineering and Technology is a challenging task. Decision makers including academics, program managers, venture capital investors, industry leaders and funding agencies not only need to be abreast of latest developments but also be able to assess the effect of growth in certain areas on their core business. Though analyst agencies like Gartner, McKinsey etc. Provide such reports for some areas, thought leaders of all organisations still need to amass data from heterogeneous collections like research publications, analyst reports, patent applications, competitor information etc. To help them finalize their own strategies. Text mining and data analytics researchers have been looking at integrating statistics, text analytics and information visualization to aid the process of retrieval and analytics. In this paper, we present our work on automated topical analysis and insight generation from large heterogeneous text collections of publications and patents. While most of the earlier work in this area provides search-based platforms, ours is an integrated platform for search and analysis. We have presented several methods and techniques that help in analysis and better comprehension of search results. We have also presented methods for generating insights about emerging and popular trends in research along with contextual differences between academic research and patenting profiles. We also present novel techniques to present topic evolution that helps users understand how a particular area has evolved over time.
Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.
The United States, including the Department of Defense, relies heavily on information systems and networking technologies to efficiently conduct a wide variety of missions across the globe. With the ever-increasing rate of cyber attacks, this dependency places the nation at risk of a loss of confidentiality, integrity, and availability of its critical information resources; degrading its ability to complete the mission. In this paper, we introduce the operational data classes for establishing situational awareness in cyberspace. A system effectively using our key information components will be able to provide the nation's leadership timely and accurate information to gain an understanding of the operational cyber environment to enable strategic, operational, and tactical decision-making. In doing so, we present, define and provide examples of our key classes of operational data for cyber situational awareness and present a hypothetical case study demonstrating how they must be consolidated to provide a clear and relevant picture to a commander. In addition, current organizational and technical challenges are discussed, and areas for future research are addressed.
This paper presents an ontological approach to perceive the current security status of the network. Computer network is a dynamic entity whose state changes with the introduction of new services, installation of new network operating system, and addition of new hardware components, creation of new user roles and by attacks from various actors instigated by aggressors. Various security mechanisms employed in the network does not give the complete picture of security of complete network. In this paper we have proposed taxonomy and ontology which may be used to infer impact of various events happening in the network on security status of the network. Vulnerability, Network and Attack are the main taxonomy classes in the ontology. Vulnerability class describes various types of vulnerabilities in the network which may in hardware components like storage devices, computing devices or networks devices. Attack class has many subclasses like Actor class which is entity executing the attack, Goal class describes goal of the attack, Attack mechanism class defines attack methodology, Scope class describes size and utility of the target, Automation level describes the automation level of the attack Evaluation of security status of the network is required for network security situational awareness. Network class has network operating system, users, roles, hardware components and services as its subclasses. Based on this taxonomy ontology has been developed to perceive network security status. Finally a framework, which uses this ontology as knowledgebase has been proposed.
We propose that to address the growing problems with complexity and data volumes in HPC security wee need to refactor how we look at data by creating tools that not only select data, but analyze and represent it in a manner well suited for intuitive analysis. We propose a set of rules describing what this means, and provide a number of production quality tools that represent our current best effort in implementing these ideas.
With the rapid development of information technology, information security management is ever more important. OpenSSL security incident told us, there's distinct disadvantages of security management of current hierarchical structure, the software and hardware facilities are necessary to enforce security management on their implements of crucial basic protocols, in order to ease the security threats against the facilities in a certain extent. This article expounded cross-layer security management and enumerated 5 contributory factors for the core problems that management facing to.
Road In this paper, we focus on both the road vehicle and pedestrians detection, namely obstacle detection. At the same time, a new obstacle detection and classification technique in dynamical background is proposed. Obstacle detection is based on inverse perspective mapping and homography. Obstacle classification is based on fuzzy neural network. The estimation of the vanishing point relies on feature extraction strategy, which segments the lane markings of the images by combining a histogram-based segmentation with temporal filtering. Then, the vanishing point of each image is stabilized by means of a temporal filtering along the estimates of previous images. The IPM image is computed based on the stabilized vanishing point. The method exploits the geometrical relations between the elements in the scene so that obstacle can be detected. The estimated homography of the road plane between successive images is used for image alignment. A new fuzzy decision fusion method with fuzzy attribution for obstacle detection and classification application is described. The fuzzy decision function modifies parameters with auto-adapted algorithm to get better classification probability. It is shown that the method can achieve better classification result.
The technology of vehicle video detecting and tracking has been playing an important role in the ITS (Intelligent Transportation Systems) field during recent years. The occlusion phenomenon among vehicles is one of the most difficult problems related to vehicle tracking. In order to handle occlusion, this paper proposes an effective solution that applied Markov Random Field (MRF) to the traffic images. The contour of the vehicle is firstly detected by using background subtraction, then numbers of blocks with vehicle's texture and motion information are filled inside each vehicle. We extract several kinds of information of each block to process the following tracking. As for each occlusive block two groups of clique functions in MRF model are defined, which represents spatial correlation and motion coherence respectively. By calculating each occlusive block's total energy function, we finally solve the attribution problem of occlusive blocks. The experimental results show that our method can handle occlusion problems effectively and track each vehicle continuously.
For wireless sensor networks deployed to monitor and report real events, event source-location privacy (SLP) is a critical security property. Previous work has proposed schemes based on fake packet injection such as FitProbRate and TFS, to realize event source anonymity for sensor networks under a challenging attack model where a global attacker is able to monitor the traffic in the entire network. Although these schemes can well protect the SLP, there exists imbalance in traffic or delay. In this paper, we propose an Optimal-cluster-based Source Anonymity Protocol (OSAP), which can achieve a tradeoff between network traffic and real event report latency through adjusting the transmission rate and the radius of unequal clusters, to reduce the network traffic. The simulation results demonstrate that OSAP can significantly reduce the network traffic and the delay meets the system requirement.
This paper presents a human model-based feature extraction method for a video surveillance retrieval system. The proposed method extracts, from a normalized scene, object features such as height, speed, and representative color using a simple human model based on multiple-ellipse. Experimental results show that the proposed system can effectively track moving routes of people such as a missing child, an absconder, and a suspect after events.
In this paper, we consider the security of exact-repair regenerating codes operating at the minimum-storage-regenerating (MSR) point. The security requirement (introduced in Shah et. al.) is that no information about the stored data file must be leaked in the presence of an eavesdropper who has access to the contents of ℓ1 nodes as well as all the repair traffic entering a second disjoint set of ℓ2 nodes. We derive an upper bound on the size of a data file that can be securely stored that holds whenever ℓ2 ≤ d - k + 1. This upper bound proves the optimality of the product-matrix-based construction of secure MSR regenerating codes by Shah et. al.
The paradigm shift from traditional BPM to Subject-oriented BPM (S-BPM) is accounted to identifying independently acting subjects. As such, they can perform arbitrary actions on arbitrary objects. Abstract State Machines (ASMs) work on a similar basis. Exploring their capabilities with respect to representing and executing S-BPM models strengthens the theoretical foundations of S-BPM, and thus, validity of S-BPM tools. Moreover it enables coherent intertwining of business process modeling with executing of S-BPM representations. In this contribution we introduce the framework and roadmap tackling the exploration of the ASM approach in the context of S-BPM. We also report the major result, namely the implementation of an executable workflow engine with an Abstract State Machine interpreter based on an existing abstract interpreter model for S-BPM (applying the ASM refinement concept). This workflow engine serves as a baseline and reference implementation for further language and processing developments, such as simulation tools, as it has been developed within the Open-S-BPM initiative.
In this paper, parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using Message Passing Interface (MPI) based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the Input/Output (I/O) bottleneck are explored, and findings indicate that architecting a machine with a larger local disk and maintaining a local file system significantly improve the scaling results. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library.
The need to keep an attacker oblivious of an attack mitigation effort is a very important component of a defense against denial of services (DoS) and distributed denial of services (DDoS) attacks because it helps to dissuade attackers from changing their attack patterns. Conceptually, DDoS mitigation can be achieved by two components. The first is a decoy server that provides a service function or receives attack traffic as a substitute for a legitimate server. The second is a decoy network that restricts attack traffic to the peripheries of a network, or which reroutes attack traffic to decoy servers. In this paper, we propose the use of a two-stage map table extension Locator/ID Separation Protocol (LISP) to realize a decoy network. We also describe and demonstrate how LISP can be used to implement an oblivious DDoS mitigation mechanism by adding a simple extension on the LISP MapServer. Together with decoy servers, this method can terminate DDoS traffic on the ingress end of an LISP-enabled network. We verified the effectiveness of our proposed mechanism through simulated DDoS attacks on a simple network topology. Our evaluation results indicate that the mechanism could be activated within a few seconds, and that the attack traffic can be terminated without incurring overhead on the MapServer.
This paper develops an opposition-based learning harmony search algorithm with mutation (OLHS-M) for solving global continuous optimization problems. The proposed method is different from the original harmony search (HS) in three aspects. Firstly, opposition-based learning technique is incorporated to the process of improvisation to enlarge the algorithm search space. Then, a new modified mutation strategy is instead of the original pitch adjustment operation of HS to further improve the search ability of HS. Effective self-adaptive strategy is presented to fine-tune the key control parameters (e.g. harmony memory consideration rate HMCR, and pitch adjustment rate PAR) to balance the local and global search in the evolution of the search process. Numerical results demonstrate that the proposed algorithm performs much better than the existing improved HS variants that reported in recent literature in terms of the solution quality and the stability.
This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.
In this paper, we consider the security of exact-repair regenerating codes operating at the minimum-storage-regenerating (MSR) point. The security requirement (introduced in Shah et. al.) is that no information about the stored data file must be leaked in the presence of an eavesdropper who has access to the contents of ℓ1 nodes as well as all the repair traffic entering a second disjoint set of ℓ2 nodes. We derive an upper bound on the size of a data file that can be securely stored that holds whenever ℓ2 ≤ d - k + 1. This upper bound proves the optimality of the product-matrix-based construction of secure MSR regenerating codes by Shah et. al.
In network intrusion detection research, one popular strategy for finding attacks is monitoring a network's activity for anomalies: deviations from profiles of normality previously learned from benign traffic, typically identified using tools borrowed from the machine learning community. However, despite extensive academic research one finds a striking gap in terms of actual deployments of such systems: compared with other intrusion detection approaches, machine learning is rarely employed in operational "real world" settings. We examine the differences between the network intrusion detection problem and other areas where machine learning regularly finds much more success. Our main claim is that the task of finding attacks is fundamentally different from these other applications, making it significantly harder for the intrusion detection community to employ machine learning effectively. We support this claim by identifying challenges particular to network intrusion detection, and provide a set of guidelines meant to strengthen future research on anomaly detection.
The relationship between accountability and identity in online life presents many interesting questions. Here, we first systematically survey the various (directed) relationships among principals, system identities (nyms) used by principals, and actions carried out by principals using those nyms. We also map these relationships to corresponding accountability-related properties from the literature. Because punishment is fundamental to accountability, we then focus on the relationship between punishment and the strength of the connection between principals and nyms. To study this particular relationship, we formulate a utility-theoretic framework that distinguishes between principals and the identities they may use to commit violations. In doing so, we argue that the analogue applicable to our setting of the well known concept of quasilinear utility is insufficiently rich to capture important properties such as reputation. We propose more general utilities with linear transfer that do seem suitable for this model. In our use of this framework, we define notions of "open" and "closed" systems. This distinction captures the degree to which system participants are required to be bound to their system identities as a condition of participating in the system. This allows us to study the relationship between the strength of identity binding and the accountability properties of a system.